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Chapter 17
Commentary by Ray Brown and Morris
Hirsch

Stretching and Folding in the KIII Neurodynamical
Model

Ray Brown and Morris W. Hirsch

Abstract In this chapter we provide an alternate view of the KIII model derived from1

the laws of complexity (Stretching and Folding) rather than the laws of physics. This2

approach requires the use of Infinitesimal Diffeomorphisms (ID) in place of Ordinary3

Differential Equations. We indicate how IDs originate and then use them to replicate4

several examples from the work of Freeman and Kozma. By viewing the KIII theory5

as a purely mathematical system we anticipate that the KIII Theory will be made more6

accessible to researchers and scientists unfamiliar with the details of neuroscience7

and thus offer advances to the KIII Theory from other perspectives.8

17.1 Introduction9

Freeman and Kozma have introduced a paradigm shift in the analysis of neurody-10

namics by focusing on the mesoscopic structures external to the neurons referred to11

as the neuropil [1], rather than the dynamics of the neuronal mass only. An under-12

standing of the amorphous nature of the neuropil, more analogous to a stiff fluid or13

a shag rug, suggested an entirely new approach to neurodynamical modeling that14

uses a field or wave paradigm as the means of communication, and the neuropil as15

the medium over which these waves must travel to relevant regions of the brain. It16

is on this fundamental wave-based neuropil approach that the KIII model is built.17

Importantly, their “wave” approach enables an explanation of how intentionality is18

communicated from the limbic system (the seat of intentionally) to specific regions19

of the brain in a manner that causes those regions to arrange or configure themselves20

to perform a desired new task. For example, the wave approach more efficiently21
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188 R. Brown and M.W. Hirsch

explains how one learns to hit a tennis ball for the first time given that they have22

never picked up a tennis racquet. This is because the range of dynamical activities23

involved in learning a new complex task must be performed in a few seconds and24

involves thought, action and emotion for the first time crossing the entire spectrum of25

human capability. Since mitosis is not operable within most of the neural mass (and26

certainly not rapidly), the problem of communicating intent and rapidly learning a27

new task driven by intent must have a dynamic that relies on speed. A wave dynamic28

is able to satisfy this specification.AQ1 29

In this volume, Vitiello describes two alternative approaches to advancing this30

theory based on the laws of physics. However, addressing how the dynamics, even31

at mesoscopic level, are transformed into everyday macroscopic behavior driven by32

human intentionality poses a significant problem which, as yet, has no solution. A33

fundamental road block is that the dynamics of everyday life cannot be formulated34

within the framework of the laws of physics. Thus we are stuck with the problem35

of bridging a dynamical system based on the laws of physics with a dynamical sys-36

tem most commonly described by statistics. In this chapter we introduce an entirely37

new approach to neuronal dynamics that side-steps the laws of Newton, physics and38

statistics. The approach presented here makes a more direct connection between the39

dynamics of the brain and the dynamics of humans at work and play by formulat-40

ing both system within the same set of laws, the laws of complexity. The “laws”41

of complexity are found in the stretching and folding horseshoe paradigm of Smale42

[2]. This approach has been introduced in the analysis and simplification of physical43

systems by Hénon [3] in deriving his simplification of the dynamics of the Lorenz44

system (known now as the Hénon map); but a more extensive analysis is needed to45

apply this approach to both human and brain dynamics with equal legitimacy. An46

initial exploration of this concept is found in the Hirsch Conjecture [4] where it is47

noted that natural systems combine stretching and folding in very small increments48

as seen in ODEs having chaotic solutions. To obtain a general mathematical expres-49

sion of complexity dynamics the concept of infinitesimal stretching and folding is50

introduced in [5]. To bridge the gap between neurodynamics and human dynamics51

at the macroscopic level it is noted that [5] the laws of complexity apply equally well52

to human dynamics and brain dynamics.AQ2 53

Vitielo also mentions another serious problem in understanding brain dynamics:54

The change in conductance of a single neuron cannot affect the dynamics of the55

mass action occurring inside the brain. To take this one step further, even minor56

changes at the mesoscopic level must not affect mass action dynamics. This aspect57

of neurodynamics is explained by two phenomena. (1) Any determination of the58

health of a human EEG is based on the morphological properties of the EEG, not its59

exact time series [6]. (2) The phenomena of sensitive dependence on initial conditions60

can only be understood in terms of the morphology of the time series in that two61

nearby trajectories may diverge or become uncorrelated, but their morphology does62

not change thus the mass action dynamics also do not change with small perturbations63

at the mesoscopic level [6].64

In this chapter we shall refer to the KIII model as a bottoms-up approach. Using a65

bottoms-up approach, the laws of physics are applied to derive a system of differential66

equations known as the KIII model, Eq. 17.46. We will reverse this approach and use67
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17 Commentary by Ray Brown and Morris Hirsch 189

their work as a springboard to develop a top-down model that uses the “laws of com-68

plexity”, with which to derive their theory. It is hoped that the combined bottom-up69

physics approach and the top-down complexity approach will merge to produce an70

even greater methodology with which to analyze and perhaps prove theories of neuro-71

dynamics; and, through using the top-down approach, we hope to make research of the72

KIII theory available to a wide range of scientists and mathematicians who do not have73

an extensive background in neurodynamics, thermodynamics and quantum theory.74

17.2 Stretching and Folding Provide an Alternative75

Approach to the Laws of Physics for Modeling76

Dynamics77

The Newtonian approach to understanding and formulating equations of dynamics78

are expressed in his second law: F = ma. This formulation is excellent for physics79

but obscures the sources of complexity and chaos that can arise in dynamical systems80

generally. Hirsch in 1985 [7] set the stage for reexamination of the laws of Newton81

with this statement:82

A major challenge to mathematicians is to determine which dynamical systems are chaotic83

and which are not. Ideally one should be able to tell from the form of the differential equation84

(Morris W. Hirsch 1985 [7]).85

In [5], following up on the conjecture of Hirsch, it is noted that by rearranging86

how the equations of dynamics are written (or simply viewing them from a different87

perspective), the form might be able to reveal the presence of chaos where the Newton88

approach of F = ma does not. The key to doing this was the observation by Smale89

used in guiding the proof of the Smale Birkhoff Theorem [2] that the source of90

complexity arose by dividing the Newtonian forces into those that stretch and those91

that fold.92

As an example, consider the Duffing/Ueda equation without damping:93

ÿ + y3 = β cos(t) (17.1)94

Written in Newtonian form we have95

ÿ = −y3 + β cos(t) (17.2)96

In this form, we are not led to sort out the source of complexity. Now we use paren-97

thesis to group the terms as follows:98

ÿ = (−y3 stretcihing) + (β cos(t) folding) (17.3)99

Recognizing by definition of stretching and folding from [5] we see that (β cos(t))100

as the folding term and y3 is the stretching term. We now know that the solution of101

this equation must be able to generate complexity not because F = ma, but because102

the forces involved are stretching and folding. If we apply this approach to the KIII103
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190 R. Brown and M.W. Hirsch

model then we must arrange the differential equations into stretching and folding104

terms. The trick is to figure out how this translates into diffeomorphisms that contain105

all the complexity of the KIII model. The thermodynamical KIII model derives ODEs106

from the known dynamics of fluids moving across membranes; on the other hand, the107

ID model must begin with an identification of the stretching and folding components.108

From [4] we know that any diffeomorphism of the form109

X → F(X) (17.4)110

where ∇((∇ · F)(X)) �= 0 is a stretching component; and any diffeomorphism of111

the form112

X → exp(A) · X (17.5)113

where A is a n × n matrix of constants is a folding component.114

There is one more step in the derivation. If we numerically integrate an ODE115

we must break down the numerical solution into discrete, but very short, steps. This116

implies that we must formulate stretching and fold in small steps, or “infinitesimal”117

increments. Using the concept of stretching and folding in small increments leads118

to the concept of Infinitesimal Diffeomorphisms as presented in [4]. By using infin-119

itesimal steps we blend the dynamics of the two forces nearly continuously as often120

occurs in the natural world.121

Now we must get an insight into how to transform an ODE into stretching and122

folding. There are two steps: (1) Recognizing the stretching and folding components123

in the ODE of interest; (2) Deriving how stretching and folding appear in ID by124

converting an ODE into an integral equation. To address (1) we use Eq. 3 from [1]:125

ÿ1 + α ẏ1 + βy1 = βwee Q(y2) (17.6)126

ÿ2 + α ẏ2 + βy2 = βwee Q(y1) (17.7)127

Rearranging the equations into stretching and folding we have:128

ÿ1 = −(α ẏ1 + βy1 −folding) + (βwee Q(y2)−stretching) (17.8)129

ÿ2 = −(α ẏ2 + βy2 −folding) + (βwee Q(y1)−stretching) (17.9)130

To address step (2), converting to an integral equation, we provide an intuitive131

derivation in the next section. Once the basic ideas are fixed, we may jump from132

ODEs to IDEs with a measure of ease. But first, we must emphasize another aspect133

of the ID formulation and its relationship to the KIII discrete dynamics.134

The reformulation of the Freeman and Kozma KIII model as IDEs offers a135

serendipitous benefit that is related to the discrete dynamics of KIII. The IDE parame-136

ter h can vary from very small to quite large as shown in [5, 8]. This variation allow137

us to observe how the dynamics of the brain change with the degree of stretching and138

folding which, in turn, will be determined by external forces and intentionality. The139

Hénon study [8] and the studies in [5] show just how dramatic changes occur due to140
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17 Commentary by Ray Brown and Morris Hirsch 191

variations in the degree of stretching and folding. For example, in [8] the variation141

of the IDE parameter, h, can move the neurodynamics through a conventional period142

doubling process to chaos. One further aspect of the IDE formulation is that it allows143

us to the study how asymmetry in stretching and folding affects the neurodynamics.144

In this point-of-view there may be separate parameters, hs, h f , for stretching and145

folding that are driven by external and internal factors. The best example of this is146

found in [9] where the stretching dynamic is chosen to be a Bernoulli, or Anosov,147

map and the folding dynamic is an almost periodic map. In [9] they are combined148

as a weighted sum to demonstrate how remarkably the dynamics can vary as the149

weighting parameter is moved from 1 (only Bernoulli stretching) to 0 (almost peri-150

odic folding). Note that, in [9], the Bernoulli component can be further divided into a151

pure stretching and a pure folding component since Bernoulli is itself a consequence152

of stretching and folding.153

17.3 Infinitesimal Diffeomorphisms First Originated154

from Integral Equations155

Two theorems will serve to set the stage of the use of IDEs in biological systems156

generally. In [6] the ODE157

ẋ + V (x) · x = 0 x(0) = x0 (17.10)158

was introduced. An integral equation version of this ODE is given by159

x(t) = exp

(
−

∫ t

t0
V (x(s))ds

)
· x(t0) (17.11)160

In higher dimensions V (x) is a square matrix.161

The importance of the form of this ODE is that it provides an entrance through162

which to understand the mathematical realization of stretching and folding. To better163

understand the ideas to come we will use a simplified version of Eq. 17.10:164

ẋ + x = 0 x(0) = x0 (17.12)165

The solution is obviously x(t) = exp(−t) · x0. another way to view this solution is166

to set t = h, where h is a small step size.167

xn+1 = exp(−h) · xn x0 specified (17.13)168

Now consider169

ẋ + x = f (t) x(0) = x0 (17.14)170

This is converted into an integral equation by introducing an integrating factor exp(t)171
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192 R. Brown and M.W. Hirsch

x(t) = exp(−t) x0 + exp(−t)
∫ t

0
exp(s) f (s)ds (17.15)172

x(t) = exp(−t) x0 + exp(−t)
∫ t

0
f (s)d exp(s) (17.16)173

Applying the mean value theorem to Eq. 17.16 we have may obtain a simple174

iteration scheme that will be presented in Theorem 17.2 to follow.AQ3175

Let x(t) be a real valued function of a real variable t . We have the following176

theorem concerning IDEs:177

Theorem 17.1 Assume178

ẋ + V (x) · x = 0 x(0) = x0 (17.17)179

has a unique bounded solution for every initial condition and that ‖x(t)‖ ≤ M for180

all t ∈ R. Let tn = n h, for h ∈ (0, a], for a < 1. also, define x̃ as181

x̃(tn+1) = exp(−V (x(tn))(h)) · x(tn) (17.18)182

then183

‖x(tn) − x̃(tn)‖ ≤ K · h (17.19)184

for fixed K and all integers n.185

Proof A formal proof is deferred to [10]. We sketch some key steps to make the186

approach clear. The two primary steps are (1) to use mathematical induction to prove187

the approximation at the nth (the result is clearly true for n = 0); and, (2) to use188

mean value theorems to eliminate integrals in favor of algebraic terms.189

Let Δ = ‖x(tn) − x̃(tn)‖ then the error at the nth step is given by190

Δ = ‖(exp(−V (x(ξ)) · h) − exp(−V (x(t0)) · h))) · x(t0)‖ (17.20)191

and so192

Δ ≤ ‖ exp(−V (x(ξ)) · h) − exp(−V (x(t0)) · h)‖ · M (17.21)193

and194

Δ ≤ ‖ exp(−V (x(ρ))) · h)‖ · ‖V (x(t0)) − V (x(ξ))‖ · h) · M (17.22)195

Let196

K1 = max
x

‖V (x(t))‖ and K2 = max
x

‖V ′(x(t))‖197

to get198

Δ ≤ ‖ exp(K1 · h)‖ · K2‖x(t0) − x(ξ)‖ · h · M (17.23)199
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17 Commentary by Ray Brown and Morris Hirsch 193

Δ ≤ ‖ exp(K1 · h)‖ · K2‖V (x(t)) · x(t) · h‖ · h · M (17.24)200

Δ ≤ ‖ exp(K1 · h)‖ · K2 · K1 · h2 · M2 (17.25)201

showing that the error can be made arbitrarily small. End of sketch.202

In particular we have the iteration203

xn+1 = exp(−V (xn) · h)) · xn (17.26)204

as an approximation to the solution of Eq. 17.10 when all smoothness and bounded-205

ness assumptions are satisfied.206

Now consider Eq. 17.27 with the same assumptions as Theorem 17.1. We roughly207

sketch the derivation of the relevant IDE and state the theorem afterwards.208

ẋ + V (x) · x = f (t) x(0) = x0 (17.27)209

By taking f (t) to be a constant, b, over a very small interval [tn, tn+1] we may obtain210

a integral equation containing a convolution. Note that the assumption on f implies211

that the derivative of f is not too troublesome, i.e., ‖ f ′(t)‖ is uniformly bounded212

over the entire real line.213

We need the substitution214

d W (t)

dt
= V (x(t))215

Introducing an integrating factor into Eq. 17.27 and collecting terms we have216

d(x(t) exp(W (t))

dt
= f (t) exp(W (t)) (17.28)217

Integrating over a small interval [tn, tn+1]218

x(tn+1) exp(W (tn+1)) = x(tn) exp(W (tn)) +
∫ tn+1

tn
f (s) exp(W (s))ds (17.29)219

220

x(tn+1) = x(tn) ·exp(−V (xn) h)+exp(−W (t))
∫ tn+1

tn
f (s) exp(W (s))ds (17.30)221

Since we have the solution for the homogeneous equation we only need to consider222

approximating the inhomogeneous part223

exp(−W (tn))

∫ tn+1

tn
f (s) exp(W (s))ds ≈ exp(−W (tn)) b

∫ tn+1

tn
exp(W (s))ds

(17.31)224
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194 R. Brown and M.W. Hirsch

where we have substituted b for f (t) over the interval [tn, tn+1]. At this point we225

assume W (t) = t to shorten and simplify the discussion so that it better applies to226

the following presentation. then the integral can be explicitly evaluated ans we arrive227

a the form of the IDE that will be present in the following discussion.228

exp(−(tn)) b
∫ tn+1

tn
exp(s)ds = exp(−(tn)) b (exp(tn+1) − exp(tn)) (17.32)229

This gives us b (exp(h)− 1) for Eq. 17.32. Collecting terms we have the theorem for230

the case where V (x) = α.231

Theorem 17.2 The IDE for Eq.17.27 is given by232

xn+1 = exp(α · h)(xn − f (n h)) + f (n h)233

For V (x) not constant, the derivation is more involved and can be found in [10].234

17.4 Deriving IDEs for the KIII Model235

Note that all equations of the KIII model may be represented in the general form:236

dX
dt

= AX + F(X, t) (17.33)237

The origin of IDs comes from converting Eq. 17.33 to an integral equation and238

then simplifying. An intuitive derivation goes as follows:239

exp(−A · (t + h))X (t + h) = exp(−A · t)X (t)240

+
∫ t+h

t
exp(−As)F(X (s))ds (17.34)241

X (t + h) = exp(A · h)X (t) + exp(A · (t + h))242 ∫ t+h

t
exp(−As)F(X (s))ds243

= exp(A · h)X (t) + exp(A · (t + h))244

·
∫ t+h

t
(−A−1)F(X (s))d exp(−As)245

= exp(A · h)X (t) + exp(A · (t + h))((−A−1)F(X (ξ))246

· (exp(−A(t + h) − exp(At))247

= exp(A · h)X (t) + (−A−1)F(X (ξ)(1 − exp(A · h))

(17.35)
248
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17 Commentary by Ray Brown and Morris Hirsch 195

X (t + h) = exp(A · h)(X (t) + (A−1)F(X (ξ))(−A−1)F(X (ξ))
(17.36)

249

X (tn+1) ≈ exp(A · h)(X (tn) − G(X (tn)) + G(X (tn))

(17.37)
250

251

where G(X (t)) = (−A−1)F(X (ξ)) and exp = exp(A · h). This requires that A−1
252

exists. When the solution is an attractor, and F is bounded, the ID provides a very253

good approximation to the solution of a nonlinear autonomous ODE.254

Using this form of the ID justifies looking for solutions to any equation of the255

form Eq. 17.33 by assuming it has the form of an IDE. The correspondence is this:256

Ẋ = AX + F(X, t) (17.38)257

Th(X) = exp(B · h)(X − G(X, f (h))) + G(X, f (h)) (17.39)258

Xn+1 = exp(B · h)(Xn − G(Xn, n · h))) + G(Xn, n · h) (17.40)259

This derivation is partly formal, partly experimental. In general, we start with the260

form of an ID if we are working with an equation of the form of Eq. 17.33 and261

then we use formal data to obtain the best approximation to the stretching terms and262

folding terms separately. The folding terms will be captured in the eigenvalues of B263

and the stretching terms will be determined by the form of G and its “stretching”264

parameters. The model derived by shifting our emphasis from KIII ODEs to KIII ID265

will be referred to as KIII-ID.266

From an engineering point-of-view, since we are starting with the known form of267

the solution, using the KIII-ID the numerical approximation and modeling should268

be achieved with a significant reduction in computational effort. This may come in269

the form of a reduction in the number of equations needed to model neurodynamics.270

We justify abandoning the derivation of a specific time series related to the physics271

described by the ODEs by the morphology principle of the EEG. This recognizes272

that it is the “form” of the equations that will best capture neurodynamics rather than273

an analysis of the physics of fluids or quantum theory.274

17.4.1 The Linear ID Provides Fundamental Insights275

into the Dynamics of Stretching and Folding Systems276

A linear Infinitesimal Diffeomorphism (ID) is277

Th(X) = exp(A · h)(X − F(X)) + F(X) (17.41)278

where A �= 0 is an n by n matrix of constants, X is an n-vector and ∇(∇ • F) �= 0,279

where F is twice differentiable function on Rn and h �= 0.280

The condition, ∇(∇ • F) �= 0 is the definition of stretching.281
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196 R. Brown and M.W. Hirsch

A linear ID inherently combines stretching and folding infinitesimally through282

the step size h. The folding part is given by exp(A · h)(X) since ∇(∇ • (exp(A · h)283

(X)) = 0 and the stretching part is suppled by F by the condition ∇(∇ • F) �= 0.284

Consider285

Ẋ = AX + F(X) (17.42)286

If F is bounded, then Eq. 17.41 accurately approximates the solution of Eq. 17.42:287

Theorem 17.3 Let F if bounded on Rn then for h1, h2, then288

‖Th1(X) − Th2(X)‖ ≤ K‖h1 − h2‖‖X‖ (17.43)289

for some constant K which depends on the bound of F.290

The fixed points of T are given by291

Th(X) = X (17.44)292

or293

exp(A · h)(X − F(X)) = X − F(X) (17.45)294

For nonzero h, Eq. 17.45 implies X − F(X) belongs to the kernel of A. Thus set of295

fixed points of the one-parameter family Th is precisely the kernel of A. Some of296

the fixed points of the linear ID are given by F(X) = X. The dynamics of the fixed297

points are given by the Jacobian of T.298

17.4.2 The Standard KIII Model Can Be Reformulated299

as a Set of Infinitesimal Diffeomorphisms (ID)300

The standard thermodynamic KIII model can be described by a vector equation301

whose most general form is Eq. 17.46. Note that in [1] second order ODEs are used302

as a basis for formulating the KIII model. To translate this into IDs, we replace each303

second order ODE with a pair of IDs.304

dX
dt

= AX + F(X, t) (17.46)305

The function F(X, t) is given as follows, see Eq. 8 of [1]:306

F(X, t) =
N∑
j

w j Q(y j ) +
N∑
j

T∑
τ

ki jk Q(y j (t − τ )) + Pi (t) (17.47)307

Equation 17.46 can be solved by iterating the vector mapping308

Xn+1 = exp(A · h)(Xn − F(Xn, tn)) + F(Xn, tn) (17.48)309
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17 Commentary by Ray Brown and Morris Hirsch 197

and when the matrix A has some eigenvalues less than 1, this approximation can be310

extremely accurate, see [12], and the step size h can be as large as 0.5 while retaining311

the morphological properties of the exact solution, [4]. Note that in Eq. 17.48 the312

time variable may be absorbed to make the equation autonomous by increasing the313

dimension by 1.314

Equation 17.48 is required to have sufficiently smooth derivatives. We rewrite315

Eq. 17.48 in the form of a transformation on a manifold:316

Th(X) = exp(A · h)(Xn − F(Xn)) + F(Xn) (17.49)317

The ID, Eq. 17.49, has broad applicability and occurs in a wide range of problems318

of physics, fluid flow and electronic circuits [13].319

More generally, an Infinitesimal Diffeomorphism (ID) is a one-parameter family320

of maps on Rn of the form (17.50) where F is a twice differentiable mapping from321

Rn to Rn , G(X) is a twice differentiable matrix function of X ∈ Rn and h �= 0 is a322

real parameter.323

Th(X) = exp(G(X) · h)(X − F(X)) + F(X) (17.50)324

As noted previously, the significance of IDs is that they are diffeomorphisms that325

also have the characteristics of a time series. This fact makes it possible to ana-326

lyze very complex nonlinear processes more efficiently than by using conventional327

numerical methods. In addition to the ability to analyze fundamental dynamics, the328

ID provides an avenue for compression of high-dimensional systems of ODEs due329

to its similarity to Gaussian integration for second-order ODEs. IDs are particularly330

well suited to analyze the morphology of nonlinear ODEs of the form (17.46) which331

includes such equations as the Chua double scroll, the Lorenz system, the Rössler332

system and the K-neurodynamical models that will be discussed in this paper.333

17.5 The Application of IDs to K-Neurodynamics May334

Result in Useful Simplifications of the ODEs335

Use to Describe the KIII System336

In this section will apply IDs to formulate the K-neurodynamical models. These337

models will be designated as the K-ID models.338

The K0-ID infinitesimal diffeomorphism is a direct translation of the K0 Eq. 1339

model [1]. As noted earlier, this translations replaces a single second order ODE with340

a pair of IDs.341

Xn = ((xn − F(xn, yn)); Yn = ((yn − F(xn, yn)) (17.51)342

343
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(
xn+1
yn+1

)
=

(
exp(α · h) · Xn · cos(ω · h) + Yn · sin(ω · h)) + F(xn, yn)

exp(α · h) · Yn · cos(ω · h) − Xn · sin(ω · h)) + F(xn, yn)

)
344

(17.52)345

The KI-ID infinitesimal diffeomorphism is a modified version of the KI model,346

Eq. 3 model in [1] Some abbreviations are needed here:347

Xn = ((xn − F(zn, wn)); Yn = ((yn − F(zn, wn)) (17.53)348

349

Zn = ((zn − F(xn, yn)); Wn = ((wn − F(xn, yn)) (17.54)350

351
⎛
⎜⎜⎝

xn+1
yn+1
zn+1
wn+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

exp(α · h) · Xn · cos(ω · h) + Yn · sin(ω · h)) + F(zn, wn)

exp(α · h) · Yn · cos(ω · h) − Xn · sin(ω · h)) + F(zn, wn)

exp(α · h) · Zn · cos(ω · h) + Wn · sin(ω · h)) + F(xn, yn)

exp(α · h) · Wn · cos(ω · h) − Zn · sin(ω · h)) + F(xn, yn)

⎞
⎟⎟⎠352

(17.55)353

Rewriting the above equations in the terminology of [1] we have, with the fol-354

lowing abbreviations355

Xn = ((xn − Q(v)); Yn = ((yn − Q(v)) (17.56)356

357

Zn = ((zn − Q(u)); Wn = ((wn − Q(u)) (17.57)358

359 ⎛
⎜⎜⎝

xn+1
yn+1
zn+1
wn+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

exp(α · h) · Xn · cos(ω · h) + Yn · sin(ω · h)) + Q(v)

exp(α · h) · Yn · cos(ω · h) − Xn · sin(ω · h)) + Q(v)

exp(α · h) · Zn · cos(ω · h) + Wn · sin(ω · h)) + Q(u)

exp(α · h) · Wn · cos(ω · h) − Zn · sin(ω · h)) + Q(u)

⎞
⎟⎟⎠ (17.58)360

where361

Q(s) = qm ·
(

1 − exp

(
1 − exp(s)

qm

))
(17.59)362

and v = x − 5.23 · w · z and u = y − 0.1 · x and qm = 5.0363

Again, we see that two second order ODEs are replaced by 4 IDs.364
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17.6 The KIII-ID Model Can Provide a Reduction365

in Computation as Well as Insights366

into the Neurodynamics367

We now define the KIII-ID as follows. Assume that Eq. 17.60 is true.368

N∑
j

T∑
τ

ki jk Q(y j (t − τ )) ≈ Q( f (y1, y2, . . . yN )) = Φ(X) (17.60)369

and let Q be defined as follows:370

Q =
N∑
j

w j Q(y j ) (17.61)371

Let Ψ (X) = Q(X)+ Q( f (y1, y2, . . . yN ) = Q(X)+Φ(X) Then KIII-ID is given372

by373

Th(X) = exp(A · h)(X − Ψ (X)) + Ψ (X) (17.62)374

The mesoscopic theory requires a wave to pulse dynamic to communicate intent to375

local regions of the brain responsible for initiating action quickly. This wave dynamic376

may be what is referred to as a calcium wave in [12] that moves through the neuropil.377

This leads us to conjecture that the KIII-ID model can be further abstracted by the378

introduction of a wave/field concept. To arrive at the KIII-ID field model we make379

the following assumptions:380

1. The KIII model was derived from the Neurodynamics of the brain using the381

simplest possible approach that captures the essential features of EEG studies.382

2. The actual dynamics of the brain are so complex that it is reasonable to try to383

abstract from the KIII model only the essential concepts and dynamics inherent384

in that model assuming a field theory of the brain.385

3. Then derive an abstract model of KIII by reverse engineering the KIII ODE386

model. To do this, two modification to the KIII theory were introduced: (A) in387

place of ODEs we used IDs that provide a dramatic simplification of the Runge-388

Kutta integration approach while retaining all dynamics and providing for step389

size variation without any loss of morphological accuracy. (B) Assume that the390

forcing function of KIII model, which was derived by direct experimentation,391

must be morphologically equivalent to a field force having a much simpler form.392

4. Ψ ( f (X)) is the Field-composite of all interactions between nodes of the KII393

model. In terms of ID theory, f will represent the transition surface in394

n-dimensional space which governs the stretching wave in the neuropil. exp(A·h)395

will provide the folding wave component.396

Given these abstractions, we present a simulation of the KII-ID model and the397

KI-ID model and contrast their morphology with EEG recordings from [14]. The398
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Table 17.1 Data for the KI-ID system in Fig. 17.1a

Damping and frequency α = −0.1 : β = 0.5

Step size h = 0.001

Number of iterations N = 1, 000, 000

Initial conditions x = 0 : y = 1 : z = 0 : w = 1.5

Table 17.2 Parameters of the KII-ID model in Fig. 17.1b

Damping and frequency α = −0.08 : β = 0.9

Step size h = 0.001

Number of iterations N = 1, 000, 000

Initial conditions x = 0 : y = 1 : z = 0 : w = 1.5

Initial conditions x1 = 0 : y1 = 1 : z1 = 1 : w1 = 1.5

Table 17.3 Parameters for KIII-ID shown in Fig. 17.2

Damping and frequency α = −0.03 : β = 0.5

Step size h = 0.01

Number of iterations N = 1, 000, 000

Initial conditions x = 0 : y = 0.02 : z = 0 : w = 0.05

Initial conditions x1 = 0 : y1 = 0.2 : z1 = 0 : w1 = 0.5

Initial conditions x2 = 0 : y2 = 0.2 : z2 = 0 : w2 = 0.5

simulations are an abstraction of Eqs. (3) and (13) from [1] (Tables 17.1, 17.2 and399

17.3).AQ4400

Iteration equations for KI-ID are as follows:401

Q0 = Q(x − 5.23 · w · z) (17.63)402

Q1 = Q(y − 0.1 · x) (17.64)403

Q(v) = 5.0 · (1 − exp((1 − exp(v))/5.0))) (17.65)404

x → exp(α · h) · ((x − Q1) · cos(β · h) + (y − Q1) · sin(β · h)) + Q1 (17.66)405

y → exp(α · h) · ((y − Q1) · cos(β · h) − (x − Q1) · sin(β · h)) + Q1 (17.67)406

z → exp(α · h) · ((z − Q0) · cos(β · h) + (w − Q0) · sin(β · h)) + Q0 (17.68)407

w → exp(α · h) · ((w − Q0) · cos(β · h) − (z − Q0) · sin(β · h)) + Q0 (17.69)408
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Fig. 17.1 Plate A Page 301, Fig. 7, Left Plate from Freeman [14], Plate B (p. 303), Fig. 9, bottom

Iteration equations for KII-ID are as follows:409

Q0 = Q(y1) + 0.6 · Q(z) (17.70)410

Q1 = Q(y1 + w1) − Q(z) (17.71)411

Q3 = Q(y − w) + 1.1 · Q(z) (17.72)412

Q4 = Q(y − x) (17.73)413

Q(v) = 5.0 · (1 − exp((1 − exp(v))/5.0))) (17.74)414

x → exp(α · h) · ((x − Q1) · cos(β · h) + (y − Q1) · sin(β · h)) + Q1 (17.75)415

y → exp(α · h) · ((y − Q1) · cos(β · h) − (x − Q1) · sin(β · h)) + Q1 (17.76)416
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202 R. Brown and M.W. Hirsch

z → exp(α · h) · ((z − Q0) · cos(β · h) + (w − Q0) · sin(β · h)) + Q0 (17.77)417

w → exp(α · h) · ((w − Q0) · cos(β · h) − (z − Q0) · sin(β · h)) + Q0 (17.78)418

x1 → exp(α · h) · ((x1 − Q3) · cos(β · h) + (y1 − Q3) · sin(β · h)) + Q3 (17.79)419

y1 → exp(α · h) · ((y1 − Q3) · cos(β · h) − (x1 − Q3) · sin(β · h)) + Q3 (17.80)420

z1 → exp(α · h) · ((z1 − Q4) · cos(β · h) + (w1 − Q4) · sin(β · h)) + Q4 (17.81)421

w1 → exp(α · h) · ((w1 − Q4) · cos(β · h) − (z1 − Q4) · sin(β · h)) + Q4 (17.82)422

423

17.7 The Wave Ψ (X) for Any K Model May Arise424

from Partial Differential Equations that Must Be425

Derived from Experiment426

While the sigmoid function is known to describe neuron binary dynamics, the427

complex summation of sigmoid functions could be replaced by a morphologi-428

cally equivalent function which is known to satisfy a wave equation, for example429

sin(u) + sin(3 · u)/3 + · · · . Figure 17.2 compares using a wave-sigmoid dynamic to430

a Global wave dynamic in the KII-ID model.431

In the KIII-ID model, the function Q(v) which represents the transfer from a432

wave to an impulse is replaced by a new function that collectively describes the local433

dynamics without considering the specific dynamics of wave-pulse interaction. This434

is a mathematical abstraction and simplification to is a break from the physics and a435

transition to just to the collective dynamics of all forces and interactions combined.436

Making this abstraction alleviates the researcher unskilled in neuroscience from fully437

understanding the particulars of the wave to pulse dynamic and only considering438

to mathematical dynamics. While this does place the engineer a step away from439

the neuroscience, it may also facilitate formulations that will encompass additional440

insights and provide access to the KIII theory by scientists and engineers unskilled441

in the details of neuroscience.442

Iteration equations for KIII-ID are as follows:443

Q0 = Q(w) + Q(x2 + Ψ (x2, w1, z, w) (17.83)444

Q1 = Q(y1 + w1) − Q(z) (17.84)445

Q3 = Q(y − w) + 1.1 · Q(z) (17.85)446

Q4 = Q(y − x) (17.86)447

Q(v) = (1 − exp((1 − exp(v)))) Plate A (17.87)448

Q(v) = sin(v) + sin(3 · v)/3 Plate B (17.88)449

Ψ (x, y, z, w) = exp(α · x) · cos(α · y)450

+ sin(5 · z) · cos(cos(x) · w) (17.89)451

x → exp(α · h) · ((x − Q1) · cos(β · h) (17.90)452

+ (y − Q1) · sin(β · h)) + Q1 (17.91)453

y → exp(α · h) · ((y − Q1) · cos(β · h) (17.92)454
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Fig. 17.2 KIII-ID Sigmoid model versus the KIII-ID wave model

− (x − Q1) · sin(β · h)) + Q1 (17.93)455

z → exp(α · h) · ((z − Q0) · cos(β · h) (17.94)456

+ (w − Q0) · sin(β · h)) + Q0 (17.95)457

w → exp(α · h) · ((w − Q0) · cos(β · h) (17.96)458

− (z − Q0) · sin(β · h)) + Q0 (17.97)459

x1 → exp(α · h) · ((x1 − Q3) · cos(β · h) (17.98)460

+ (y1 − Q3) · sin(β · h)) + Q3 (17.99)461

y1 → exp(α · h) · ((y1 − Q3) · cos(β · h) (17.100)462

− (x1 − Q3) · sin(β · h)) + Q3 (17.101)463

z1 → exp(α · h) · ((z1 − Q2) · cos(β · h) (17.102)464

+ (w1 − Q2) · sin(β · h)) + Q2 (17.103)465

w1 → exp(α · h) · ((w1 − Q2) · cos(β · h) (17.104)466

− (z1 − Q2) · sin(β · h)) + Q2 (17.105)467

x2 → exp(α · h) · ((x2 − Q5) · cos(β · h) (17.106)468
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+ (y2 − Q5) · sin(β · h)) + Q5 (17.107)469

y2 → exp(α · h) · ((y2 − Q5) · cos(β · h) (17.108)470

− (x2 − Q5) · sin(β · h)) + Q5 (17.109)471

z2 → exp(α · h) · ((z2 − Q4) · cos(β · h) (17.110)472

+ (w2 − Q4) · sin(β · h)) + Q4 (17.111)473

w2 → exp(α · h) · ((w2 − Q4) · cos(β · h) (17.112)474

− (z2 − Q4) · sin(β · h)) + Q4 (17.113)475

476

17.8 Summary477

Starting with the KIII wave theory of Freeman-Kozma, we derived a top-down math-478

ematical model, KIII-ID, which used the concept of stretching and folding in place479

of the laws of physics. We noted that the ID model has a mathematical foundation480

that has broad applicability to many dynamical systems including the KIII ODEs.481

We discussed some of the simplifying advantages of the KIII-ID approach and then482

we used the KII-ID model to morphologically replicate results from the KIII model483

of known EEGs. Finally we suggested that the sigmoid function could be replaced484

by solutions of wave equations which may lead to further simplifications of the KIII485

theory and make it more accessible to researchers without an extensive knowledge486

of neurodynamics as well as more amenable to formal scientific proof.487
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