
Tutorials and Reviews

International Journal of Bifurcation and Chaos, Vol. 8, No. 1 (1998) 1–32
c© World Scientific Publishing Company

CLARIFYING CHAOS II: BERNOULLI CHAOS,
ZERO LYAPUNOV EXPONENTS AND

STRANGE ATTRACTORS

RAY BROWN
Applied Chaos Technology Corporation,

3865 Wilson Boulevard, Suite 210, Arlington, VA 22203, USA

LEON O. CHUA
Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley, CA 94720, USA

Received March 31, 1997; Revised November 20, 1997

In this tutorial we continue the program initiated in “Clarifying Chaos: Examples and Counter
Examples” by presenting examples that answer questions in five areas:

Area 1. The Horseshoe/Bilateral Shifts/Bernoulli Systems

Since the bilateral shift (which may also be called a Bernoulli shift) plays such an important
role in some definitions of chaos we show that it is possible to construct a differential equation
for an electronic circuit whose time-one map,1 is exactly a bilateral shift, in particular the
bakers transformation and the cat map [Arnold & Avez, 1989]. We insist on being able to build
a circuit in order to be sure that our example is not just a mathematical abstraction. Also,
in this set of examples we show that we may construct chaotic maps of any desired level of
complexity.

Area 2. Zero Lyapunov Exponents

Since the existence of positive Lyapunov exponents is so often used as a definition of chaos we
answer the question: Are there systems with zero Lyapunov exponents which are not consid-
ered chaotic by this definition, which have outputs which are more complex that some chaotic
systems? The answer is yes, and for these systems, called skew translations and compound skew
translations [Cornfeld et al., 1982], all the eigenvalues are 1. Further, the skew translation may
be linear, having only additions (no multiplication’s). Skew translations exist in any number of
dimensions and can be realized as the time-one maps of an electronic circuit. Skew translations
can have sensitive dependence on initial conditions and zero autocorrelations. The significance
of this example is that the Lyapunov exponent is less a measure of the level of complexity than
one first imagined since a higher level of complexity can be obtained from a lower exponent.

Area 3. Nonchaotic Strange Attractors

This phenomenon is reported in [Grebogi et al., 1984] and further developed by other re-
searchers. Of note in this regard is the work of Ding et al. [1989] where the place of this
phenomenon within nonlinear dynamics is discussed. We show here that the origin of this phe-
nomenon is found in dynamical systems having orbits with low correlations regardless of their
Lyapunov exponents. We present examples of skew translations having zero autocorrelations

1The terms “time-one map” and “Poincaré map” are, today, used interchangeably even within mathematical circles. While
some differences in their precise definitions do exist, these differences do not affect the present-day usage of these terms.
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and zero Lyapunov exponents that can be used to generate nonchaotic strange attractors.
Further, we show that only minimal level of complexity is needed to obtain nonchaotic strange
attractors by using a group rotation to produce one. The inverse of this idea is the chaotic
nonstrange attractor which is also presented.

Area 4. Nonlinearity

Since nonlinearities are usually considered a key ingredient of chaotic dynamical systems we
present examples to show that there are at least four distinct types of nonlinearities in ODEs
leading to varying levels of chaos. All example ODEs have closed-form solutions in terms of
elementary functions and thus give us direct insight into how the type of nonlinearity appears
in the ODE and is manifested in its solution.

Area 5. Relationship of Dissipation, Noninvertibility, Nonorientibility and Chaos

There are many misconceptions about how these properties, especially dissipation, may con-
tribute to chaos. We show that these properties are independent of chaos.

The overriding conclusion of this set of examples is that what we have traditionally called
chaos is so varied in its level of complexity that it is almost a meaningless term when used
by itself. In particular, the term “level of complexity” must be appealed to so often in order
to clarify the varying degrees of chaos that the two terms “chaos” and “level of complexity”
seem inseparable in any practical discussion of chaos. The key issue that gives rise to this
confusion about the level of complexity of a chaotic dynamical system is its long- and short-
term predictability. Chaotic dynamical systems may be quite predictable over very long but
finite time scales, but unpredictable in infinite time. The need to consider system behavior over
long, finite time scales is a practical matter and leads to the conclusion that the study of chaos
must be concerned with both asymptotic and long, but finite, time dynamics.

1. Introduction

Poincaré–Birkhoff–Smale chaos, a term coined by J.
Marsden, designates the family of chaotic dynam-
ical systems for which the system is conjugate to
a root of a shift2 on a subset of its domain. This
situation is often described by saying that the sys-
tem has a horseshoe. While this definition cannot
yet be proven to encompass all chaotic dynamical
systems, it does represent a significant, if not the
most significant, class of chaotic dynamical systems.
Extensive literature exists which is devoted to show-
ing systems which are chaotic by proving the pres-
ence of a horseshoe. There are, however, two quirks
in this definition: (1) The horseshoe may exist on
a set of measure zero; and (2) The system may be
conjugate to such a small root of the shift that it
has a very low order of complexity. This low level
of complexity may result in the system having such
a predictable nature over long but finite-time scales
that the term “chaos” is misleading.

In Sec. 2, in order to convey an intuitive grasp

of the meaning of the horseshoe in a useful formula,

we construct an example of an ODE whose time-

one map is exactly a horseshoe, not a root. Also,

we show how routine it is to construct examples

which illustrate how systems can be conjugate to a

shift on a set of measure zero. Further, we examine

numerous methods of altering a Bernoulli system

so that enough of its level of complexity is retained

to call the resulting system chaotic. This line of

thought is motivated by the proof of Kalikow that

one Bernoulli system may be used to modify an-

other in such a way that the resulting system is a

Kolomogrov system which is not Bernoulli [Walters,

1982]. In our recent paper From Almost Periodic to

Chaotic: The Fundamental Map we demonstrated

just how extraordinarily such modified Bernoulli

systems may behave.

In Sec. 3 we construct examples of systems

which meet some of the criteria of chaos, but which

2A mapping f is a root of a shift, S, when, for some positive integer n, fn(x) = S(x). For example, x→ 2xmod(1) is a root
of x→ 4xmod(1).
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have zero Lyapunov exponents. These examples
demonstrate the limitations of the most popular
definition of chaos, positive Lyapunov exponents,
and raise the question of how is a system’s level of
complexity, in a practical sense, best measured in
dynamical systems.

In Sec. 4 we demonstrate the basic construction
of nonchaotic strange attractors and show how they
may arise from even linear skew translations on the
two-dimensional torus.

In Sec. 5 we present examples to illustrate how
four different features of dynamical systems may
be modified to make it nonlinear. The point of
this set of examples is to expand our insight into
two-dimensional systems in a way not afforded by
the traditional analysis of the Poincaré–Bendixson
theory.

In Sec. 6 we clarify the relationships between
dissipation, noninvertibility, nonorientation pre-
serving, and chaos.

In Sec. 7, we summarize this paper and also
summarize the combined results of our first paper
and this paper.

In the following discussions we will use some ab-
breviations introduced in the first tutorial [Brown
& Chua, 1996a], and include several more that will
be used throughout this paper:

Abbreviations

Sensitive dependence on initial conditions (SD),
Zero Autocorrelation (ZA), Zero Lyapunov expo-
nent (LZ), Positive Lyapunov Exponent (LP), Zero
Entropy (ZE), Strange Attractor (SA), Ergodic (E),
Weak Mixing (WX), Strong Mixing (SX), Kolo-
mogrov (K), Bernoulli (B).

The formal definitions of the last five abbrevi-
ations are from ergodic theory and can be found in
[Walters, 1982]. In short, they are measures of how
well a transformation mixes up its domain when
iterated over a infinite time span. Ergodic is the
lowest form of mixing and Bernoulli the highest.
Dynamical systems that have one of these forms of
mixing have some level of complexity. Chaos is usu-
ally associated with B in some way.

Algorithmic Complexity and
Level of Complexity

The concept of algorithmic complexity developed
by Chaiten, Kolomogrov, and others is used to dis-
tinguish two levels of complexity. In reference to in-
finite sequences of integers, a sequence has positive

algorithmic complexity when the number of binary
bits required to code the shortest computer pro-
gram needed to produce the sequence is just about
the same length as the number of binary bits re-
quired to write the sequence out explicitly. For in-
finite sequences, this number is defined in such a
way that either it is positive or zero. A sequence
of positive algorithmic complexity is, “essentially”,
random. Zero algorithmic complexity thus denotes
sequences that are less than random. This encom-
passes all sequences which can be described by a
finite algorithm. The square root of a prime num-
ber is such a sequence, as is the number π, and all
other physical constants. This notion of complex-
ity is too limiting for our use and so we introduce
the notion of a level of complexity of a sequence.
Entropy is a measure of a level of complexity, as
is autocorrelation, and information. The Lyapunov
exponent is a measure of a level of complexity as
well. In the study of chaos, various researchers ap-
peal to these measurements to characterize dynami-
cal systems that have a degree of unpredictability or
intractability. The complexity spectrum is a term
introduced in [Brown & Chua, 1997] as a means of
talking about all of these measurements of a dy-
namical systems collectively. No formal definition
has yet been formulated.

2. Bernoulli Chaos

In our previous tutorial we presented numerous ex-
amples and counter-examples designed to sharpen
our thinking about the definition of chaos. That pa-
per served to show that the manifestations of chaos
are varied and difficult to summarize in a single def-
inition. In order to better understand the variety
of ways in which chaos can arise, we begin with
the Bernoulli systems, possibly the highest form of
chaos, and carry out a program of systematic “di-
lution” of this form of chaos until chaos disappears
altogether. The methods that we use to modify a
Bernoulli system reveal how chaotic systems may
arise. The most important motivating example is
that of Kalikow of a Kolomogrov automorphism
which is constructed by using one Bernoulli system
to modify another in such a way that the resulting
system is not Bernoulli, but is Bernoulli on a set of
measure zero.

Once we have hit upon the idea of modifying
Bernoulli systems as a means of creating chaos we
may take off with this idea in all directions.
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Among the ways to modify a Bernoulli system
are:

(1) Form a cross-product between a Bernoulli and
nonBernoulli;

(2) Form a partial product of Bernoulli with
any other map, including Bernoulli (K-
automorphisms);

(3) Compose Bernoulli and nonBernoulli;
(4) Form a function of a component of a Bernoulli

(logistic map);
(5) Form the weighted average of a Bernoulli and

nonBernoulli system (the fundamental map)
[Brown & Chua, 1996].

This list is incomplete. The different ways a
Bernoulli system may be modified to make a chaotic
system are likely to be so numerous and varied that
no single characterization would be possible.

2.1. The Bernoulli map

In our paper on the fundamental map [Brown &
Chua, 1996b] we showed how to construct a func-
tion of a two-sided Bernoulli map. We repeat a
portion of that construction as background to our
derivation of the sequence of iterates of the cat map.

Before we repeat that construction we note that
the map that is most easily proven to be a two-sided
Bernoulli shift is the bakers transformation, [Arnold
& Avez, 1968]. The most familiar formulation of
this map is (

x

y

)
→
(

2x

y/2

)
mod(1) (1)

for 0 ≤ x ≤ 1/2 and(
x

y

)
→
(

2x

(y + 1)/2

)
mod(1) (2)

for 1/2 ≤ x ≤ 1. This map formulation can be
greatly simplified by the use of the notation [x]
which denotes the integer part of x. In this notation
we have:(

x

y

)
→
(

2x

([2x] + y)/2

)
mod(1) . (3)

If we use {x} for the fractional part of x this sim-
plifies to (

x

y

)
→
(

{2x}
([2x] + y)/2

)
. (4)

In this form, a closed-form solution for the nth term
of this sequence is (note that this solution is not in
terms of elementary functions):(

{2nx}
([2nx] + y)/2n

)
. (5)

Note that everything we have said about this map
carries over to the case where 2 is replaced by any
positive integer k. Thus(

{knx}
([knx] + y)/kn

)
(6)

is a formula for the nth iterate of a bi-lateral shift
on k symbols. While this sequence can be made the
time-one map of an ODE representing an electronic
circuit by our usual methods [Brown & Chua, 1992],
we will direct our attention to the cat map instead.
This is because the cat map is also a Bernoulli shift
[Katznelson, 1971] and its solution can be expressed
in terms of the elementary functions. Hence we will
use the cat map as our basic example of a Bernoulli
map, although the proof in case of the baker’s trans-
formation is easier to see [Arnold & Avez, 1968,
Appendix 7].

As in [Brown & Chua, 1996b], let
u

v

w

z

 =


cos(x)

sin(x)

cos(y)

sin(y)

 . (7)

By direct substitution, application of the
double-angle formulas for the sine and cosine, and
simplification, we get the following four-dimensional
system, T , on a two-dimensional space:

T


u

v

w

z

 =


0 0 (u2 − v2) −2uv

0 0 2uv (u2 − v2)

w −z 0 0

z w 0 0



×


u

v

w

z

 . (8)

In complex coordinates this map is given by:

T

(
w

z

)
=

(
w2z

wz

)
(9)
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where |w| = |z| = 1. A simple computation shows that this mapping is 1− 1, in particular:

T−1

(
w

z

)
=

(
wz̄

z2w̄

)
. (10)

We now write the sequence of iterates of the cat map in closed form in terms of elementary functions.
The key to doing this is the derivation of an expression for the nth power of the matrix used in the definition
of the cat map. Let

A =

(
2 1

1 1

)
(11)

then

An =
1

(1− λ2)λn−1

(
λ2n(1− λ) + (2− λ) 1− λ2n

1− λ2n (λ2n(1− λ) + (1− 2λ))/λ

)
(12)

where λ = 0.5(3 +
√

5), which is the largest eigenvalue of the matrix A. Using this we may write the nth
term in the sequence of iterates of this map. For notational convenience let(

an bn

cn dn

)
=

1

(1− λ2)λn−1

(
λ2n(1− λ) + (2− λ) 1− λ2n

1− λ2n (λ2n(1− λ) + (1− 2λ))/λ

)

then 
un
vn
wn
zn

 =


cos(anφ0 + bnθ0)

sin(anφ0 + bnθ0)

cos(cnφ0 + dnθ0)

sin(cnφ0 + dnθ0)

 . (13)

Note that bn = cn.
This is the closed-form solution we seek for the

chaotic mapping on the torus. By taking arctan-
gents we obtain the Bernoulli iterates in terms of
the elementary functions.

What we have done, as in our example of the
logistic map, is not very complex. To obtain the so-
lutions we sought, we needed only to find a method
of getting around the use of the modulo(1) oper-
ation. The basic technique of doing this was ex-
plained in [Brown & Chua, 1996a]. The key idea to
note, periodic functions perform the same operation
as the modulo(1) function.

2.2. The Bernoulli map as a
Poincaré map

By employing a two-phase gate we may construct
the equations of a nonautonomous ODE whose
Poincaré map is the Bernoulli map. This technique
is explained in [Brown & Chua, 1993]. We have the
following equation for which the Bernoulli map is
the Poincaré map:(

ẇ

ż

)
=

(
(1− s(t))w log(z)

s(t)z log(w)

)
(14)

where s(t) = 0.5(1+sgn sin(ωt)). Initial conditions
must be taken to have absolute value 1.

The Bernoulli map can be written, as this equa-
tion suggests, as a composition of two maps:

T1

(
w

z

)
=

(
w

zw

)
(15)

T2

(
w

z

)
=

(
wz

z

)
(16)

which are time-one maps for autonomous ODEs.
The Bernoulli map is T2 ◦T1. The component maps
arise as time-one maps of the solutions of two sys-
tems of ODEs. The solutions are as follows:(

w1(t)

z1(t)

)
=

(
w0

z0w
t
0

)
(17)

(
w2(t)

z2(t)

)
=

(
w0z

t
0

z0

)
(18)

which are the solutions of the separate component
ODEs corresponding to the two phases of the func-
tion s(t).

These equations are presented in complex form
for convenience. The complex representation is not
essential and no complex variable theory has been
used in our analysis.

Now that we have a Bernoulli mapping in an
algebraic formula we proceed to utilize this map to
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construct examples of chaos which are less than
Bernoulli.

2.3. Cross products with
Bernoulli systems

The simplest way to obtain a map which is Bernoulli
on a set of measure zero is to have at least one com-
ponent of a cross product to be Bernoulli, and one
that is not Bernoulli. Let,

T

 u

v

w

 =

u
2v

uv

aw

 (19)

where the first two components are restricted to
have modulus 1. If we choose w0 = 1, and 0 <
a < 1, we form orbits for which the third coordi-
nate converges to 0 but the first two are Bernoulli.
By construction, T is not Bernoulli but is Bernoulli
on a set of measure zero. Further, the points of
the first two components form a two-dimensional
attractor which is Bernoulli.

The three-dimensional image of the orbits of
the map defined by Eq. (19) is shown in Fig. 1. As

seen there, the orbit converges to a two-dimensional
square which is the attractor. Another way of look-
ing at this figure is to think of the third coor-
dinate as a time parameter. With this point of
view, the time evolution of the Bernoulli map is
portrayed by the third dimension. The uniformity
of the points that lie above the attractor portray
the randomness of the orbit. If the points that
lie above the attractor formed a pattern, we would
know that the Bernoulli system determined by the
first two coordinates is less than random. This
brings us to Fig. 2, another Bernoulli map. In
this case, instead of our map being the analog of
the one-dimensional map 2xmod(1), it is the ana-
log of 1.032xmod(1). This map thus has a positive
Lyapunov exponent, ≈ 0.032, and is the root of a
shift, a horseshoe. However, as seen in Fig. 2,
it is less than random, having distinctive pattern
features in its orbit. Figure 2 shows that hav-
ing a positive Lyapunov exponent does not mean
that there is a high degree of randomness, or chaos
in the map, even though, by any definition, it is
chaotic.

Fig. 1. In Fig. 1 we have made the domain, a square, of the cat map an attractor. The result is that, when the initial
condition has a nonzero z value the orbit is attracted to a square in the x − y plane. The effect is reminiscent of mist rising
from a body of water.
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Fig. 2. In Fig. 2 we modified the cat map to have a Lyapunov exponent of ≈ 0.039. The figure format is exactly the same
as Fig. 1. The result is the development of nonchaotic graphical features. By making the range of the modified cat map an
attractor, this breakdown in the level of complexity is clearly visible in the part of the orbit above the attractor.

2.4. K-automorphisms

Following an example of Kalikow from [Walters,
1982] we construct (without proof) a map which
is a K-automorphism:

K


u

v

w

z

 =


u2v

uv

sg(u)(w2z) + (1− sg(u))(wz̄)

sg(u)(wz) + (1− sg(u))(z2w̄)


(20)

where sg(u) = 0.5(1 + sgn(0.5 + cos(arg(u)). We
note that K has a set of measure zero on which it is
Bernoulli in analogy with the horseshoe of Smale.
The construction is not a direct product, so we call
it a partial product.

Figure 3 is a three-dimensional illustration of
a modification of this map. The modification is to
the first component where, for convenience, we have
used the logistic map as a one-dimensional source
of chaos to be used to switch between the cat map
and its inverse. The exact equation for Fig. 3 is as

follows:

K

 u

w

z

 =

 4u(1 − u)

sg(u)(2w + z) + (1− sg(u))(w − z))
sg(u)(w + z) + (1− sg(u))(2z − w)


×mod(1) (21)

where sg(u) = 0.5(1 + sgn(0.5 − u).
This example captures the essence of Eq. (21)

while being simpler to implement on a computer. In
the vertical dimension, K is just the logistic map.
In the z, w dimension K alternates between the cat
map and its inverse. The Lyapunov exponent in the
z, w dimensions is the same as the cat map. How-
ever, the level of complexity of the orbit that cat
map contributes is being constantly reversed by its
inverse. The possibility of global chaos that comes
from the cat map must always be compromised by
the inverse, thus leaving only local, finite excursions
of chaos that come from long runs by the logistic
map having a value above 0.5. Thus the chaos of
this map is actually being imparted by the logistic
map. We will see in Sec. 3 that it is possible to con-
struct an example of a three-dimensional map from
Eq. (21) where we replace the first two components
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Fig. 3. The orbit of the K map of Eq. (21) is presented with the same format as Figs. 1 and 2. While there are no orderly
geometric features present as there are in Fig. 2, the orbit is clearly different from the cat map.

with a map which has a LZ, ZA, E, and hence it
looks “random.”

2.5. Other partial products

The following example is neither Bernoulli, K, nor
almost periodic, but has a set of measure zero on
which it is Bernoulli:

K


u

v

w

z

 =


u2v

uv

sg(u)(w2z) + (1− sg(u))(aw)

sg(u)(wz) + (1− sg(u))(bz)


(22)

since the third and fourth components of the map
alternate “randomly” between Bernoulli and are al-
most periodic.

We note that by replacing the function sgn(u),
which occurs in the definition of the function sg(u),
in the above equations with a sigmoid function we
make all examples infinitely differentiable.

2.6. Gated compositions with
Bernoulli systems

We have shown how to use a two-phased gate to

construct Poincaré maps from time-one maps of au-
tonomous ODEs [Brown & Chua, 1993]. In those
constructions we choose each phase of the gate to
have equal time. Using a gate which does not have
equal time gives us another construction. We ex-
plain this construction in two steps. First we de-
scribe the gate:

s1(t) = 1 for 0 ≤ t < 1 (23)

s1(t) = 0 for 1 ≤ t < 3 (24)

s1(t+ 3) = s1(t) (25)

s2(t) = 1− s1(t) (26)

Note that s2(t) is nonzero twice as long as s1(t).
Using this gate we define a general nonautonomous
ODE:

ẋ = s1(t)F1(x) + s2(t)F2(x) . (27)

The Poincaré map determined by sampling the map
at times t = 1, 2, 3, . . . , results in one point of the
orbit being determined by ẋ = F1(x) and the next
two points being determined by ẋ = F2(x), then
back to the F1 equation. The Poincaré map is not
simply the composition of the maps determined by
F1 and F2 because we must actually get one point



Clarifying Chaos II 9

of the orbit from the F1 equation and then get two
points from the F2 equation. A composition would
omit the intermediate points, only recording the re-
sult of applying the F1 equation and then the F2

equation to the initial point. The presence of these
intermediate points being included in the orbit is
significant in that they alter the geometry and the
level of complexity of the orbit.

The time difference between the two phases
may be as long as we desire. In our example this
ratio is 1:2. The greater the ratio between the
phases the greater the difference in the contribu-
tion to the orbit by the two phases. In this way,
we may combine a Bernoulli phase with an almost-
periodic phase in such ratios (say, 1:1000000) that
the Bernoulli contribution is as thin as we please
and the resulting orbit must still be chaotic. This
technique shows how to include a Bernoulli system
at any desired level we choose to construct a chaotic
orbit whose chaotic features are as “thin” as we
choose. The mechanism illustrated by this exam-
ple could easily be reflected in a real-world system
in which complex forces alternated with periodic
forces to shape some geological feature or biological
feature of a life form.

Another technique we may use is to construct
the time one-half map, i.e. sample the orbit at in-
tervals of t = 1/2. In this way we get two Bernoulli
points followed by four almost-periodic points.
Doing this amounts to refining the gates into four
phases, each gate being decomposed into two phases
over its nonzero range. The technique of gate refine-
ment corresponds to the mathematical technique of
refining a partition of the real line, so often used
in measure theory and ergodic theory. Using the
refinement method we can now construct the ODE
which is a gated composition of Bernoulli and al-
most periodic. After all the simplifications we get
a three-phased gate as follows:

s1(t) = 1 for 0 ≤ t < 1 (28)

s1(t) = 0 for 1 ≤ t < 6 (29)

s2(t) = 0 for 0 ≤ t < 1 (30)

s2(t) = 1 for 1 ≤ t < 2 (31)

s2(t) = 0 for 2 ≤ t < 6 (32)

s3(t) = 0 for 0 ≤ t < 2 (33)

s3(t) = 1 for 2 ≤ t < 6 (34)

We extend the functions to be periodic of period 6.
Now we define our gated-circuit equation in com-
plex variable notation:

(
ẇ

ż

)
=

(
s1(t)w log(z) + s3(t)z

s2(t)z log(w)− λ2s3(t)w

)
. (35)

By altering the ratios of the gate we obtain any
level of chaos desired.

Functions of Bernoulli Systems

In [Brown & Chua, 1996a], we showed how to com-
pose periodic functions with exponential functions
to get closed-form solutions to chaotic equations.
The basic process can be extended to Bernoulli
systems.

Weighted Averages of Bernoulli
and NonBernoulli Systems

In [Brown & Chua, 1996b], we illustrate how to
combine Bernoulli with almost periodic to obtain a
wide range of chaotic maps.

2.7. Chaotic systems from
Bernoulli time

Since exponential stretching can generate chaos,
any system that “circulates” through a region of
exponential stretching an infinite number of times
that is not offset by a equal amount of contracting
may produce chaos. (Even if it circulates through
an equal amount of contracting, it may still pro-
duce chaos.) Typically, circulation through a region
of exponential stretching will depend on the initial
conditions.

Bernoulli systems are an easy source of ex-
ponential stretching and, as we have shown ear-
lier, may be decomposed into two maps which are
each nonexponentially stretching. Hence we need
only circulate through nonexponentially-stretching
regions in some manner to generate chaos. An
important question is whether we may circulate
through a stretching region in an almost periodic
manner and generate chaos. The answer is yes,
since the unstable manifold of the Bernoulli system
on the torus, the cat map, winds through the torus
in an almost periodic manner. If this manifold were
the orbit of a point moving with constant velocity
the result would be almost periodic motion. This
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comment leads to our next means of creating chaos
from Bernoulli systems:

(6) Starting with a continuous-time system on a
bounded manifold which is almost periodic and
whose orbits have infinite arc length, we change
the time parameter from t to exp(t).

Having connected orbits of infinite arc length
assures that the new system is invertible. If the
arc length is finite, such as a circle, then the re-
sulting system can be noninvertible. (For exam-
ple, x = cos(exp(t)), y = sin(exp(t)).) By using
the torus instead of a circle we have room to ma-
neuver out of the way of previous points in the or-
bit. In particular, starting with any orbit on the
torus inclined at an irrational angle from the verti-
cal we obtain an orbit of infinite arc length on which
we may move forward in exponential time to create
chaos. This amounts to wrapping an orbit of ẋ = x,
ẏ = y around the torus inclined at an irrational
angle. Generalizing this concept we have the fol-
lowing method of generating chaos from Bernoulli
systems:

(7) Given any bounded manifold on which there is a
vector field with integral curves having infinite
arc length, we may change the time parameter
to exponential time and obtain a chaotic sys-
tem. It is only necessary to change the time to
at for a > 1 to obtain chaos.

As a variation on this idea we have the fol-
lowing method of generating chaos from Bernoulli
systems:

(8) Given any sequence, we may intersperse an infi-
nite number of points from a Bernoulli sequence
by any rule and the resulting sequence becomes
chaotic.

2.8. Bernoulli space-time

As we have noted, we may make almost periodic
systems chaotic by changing the time scale. In gen-
eral, a time scale which is accelerating cannot be
distinguished from a uniform time scale in which
spatial coordinates are accelerating. Thus, nonuni-
form Space-Time acceleration can give rise to chaos.
Of course, this is “relative” to an imagined observer
moving in a nonaccelerating frame. The nonuni-
form acceleration we are most interested in is the
sort in which an object has some magnitude which
is accelerating and decelerating, since no magnitude

can increase indefinitely. An example is a planetary
system consisting of three planets grouped as a unit
(think of the earth having two large moons), orbit-
ing around a star. Their mutual gravitational at-
tractions can cause their orbits to be chaotic. The
result is that there is no uniform time scale, since on
each planet the sun rises at a different time during
each revolution. The time scale is Bernoulli, and
these life forms, if they could exist, live in Bernoulli
Space-Time.

3. Complex Dynamics from
Maps with Zero Lyapunov
Exponents (LZ)

We now present examples to show that systems
with zero Lyapunov exponents can produce a
level of unpredictability greater than some chaotic
systems.

The rationale for these examples is a theorem
of Weyl [1916], and our observations in [Brown &
Chua, 1996a] that the sequence sin(n2) is uncor-
related and uniform. The example to be given is
well known to ergodic theory but less known in the
general scientific community. Also, we show how
to make this map a Poincaré map for an electronic
circuit. The map is:

T

(
x

y

)
=

(
x+ y

y + τ

)
mod(1) (36)

If τ is irrational, this map is ergodic(E).
Further, it is not a simple rotation, hence its obits
are not almost periodic. The eigenvalues are 1, 1,
hence the Lyapunov exponent (LZ) is 0. Further, it
has zero entropy (ZE), see [Peterson, 1983] for all
facts. This is a two-dimensional example of what
is called in ergodic theory a skew translation. In
complex coordinates it can be expressed as

T

(
w

z

)
=

(
wz

az

)
(37)

where |a| = |w| = |z| = 1. We recall that a twist on
the torus is written as

T

(
w

z

)
=

(
wz

z

)
(38)

and so if a = 1 the twist and the skew translation
are the same. Also, recall that a Bernoulli map-
ping on the torus is given by the composition of
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Fig. 4. The format of this orbit of a skew translation is the same as Fig. 1, the cat map. From a casual observation it is
impossible to distinguish this orbit from the chaotic map in Fig. 1. However, the Lyapunov exponent is 0. In contrast to
Fig. 2, a map with a positive Lyapunov exponent, this nonchaotic map more closely resembles chaos than the truly chaotic
map of Fig. 2.

Fig. 5. In this figure we have transformed the orbit of Fig. 4
by a pair of twists. The result is an nonchaotic orbit that
could be mistaken for a strange attractor.

Fig. 6. In this figure we have transformed the orbit of Fig. 4
by another pair of twists, rendering a dramatic attractor
which is nonchaotic.
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(a)

(b)

Fig. 7. (a) This figure is the graph of a simple ergodic map on the unit interval, an interval exchange map commonly
encountered in ergodic theory. The x-axis partitions are at (2n − 1)/2n. The level of complexity here is minimal in that
it is slightly more complicated than an irrational rotation. Except for the discontinuities, this map is made up of simple
translations of intervals of the function y = x. (b) In this figure we have used the map of Fig. 7(a) to form a three-dimensional
map in the format of Fig. 1. The orbit illustrated here shows just how complex this map can appear even though it is not
chaotic.
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(a)

(b)

Fig. 8. In Fig. 8(a) we construct a map, g(x), with LZ and E. As a result, the computation of the Lyapunov exponent
is reduced to the fundamental theorem of calculus and we see that the total percentage of expansion must equal the total
percentage of contraction so that the net is 0. Figure 8(b) reveals that this map produces a distribution of orbit points that
is quite uniform. The map for Fig. 8(b) is the same as Eq. (44) where f is replaced by g.
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two twists:

T1

(
w

z

)
=

(
wz

z

)
(39)

T2

(
w

z

)
=

(
w

zw

)
(40)

and so

B

(
w

z

)
=

(
w2z

zw

)
= T2 ◦ T1 . (41)

The algebraic form of these equations reveals their
relationships and clearly the skew translation falls
between the twist (all orbits are almost periodic)
and the Bernoulli map. If the complex number a
has positive algorithmic complexity, the orbits of
the skew translation are, relative to the twist, un-
predictable and have sensitive dependence on ini-
tial conditions (SD). In fact, the real-valued coor-
dinates of this skew translation have factors like
sin(n2), cos(n2) which are uncorrelated. To see this
we obtain the nth iterate of this map by a direct
computation:

Tn
(
x

y

)
=

(
x+ ny + n(n+ 1)a/2

y + na

)
mod(1) (42)

By considering k-dimensional skew translations
we may obtain terms which behave like sin(nk),
while retaining E, ZA, SD, and LZ. Following this
idea to its natural conclusion we can construct a
map with LZ which has terms that behave like
sin(p(n)) where p(n) ≈ exp(n).

Figures 4–6 illustrate some orbits of a skew
translation. Figure 4 is the analog of Fig. 1 in Sec. 2
and is presented in the same way. The exact equa-
tion is

T

wz
u

 =

w + z

a+ z

bu

mod(1) (43)

where 0 < |a|, |w|, |z|, |b| < 1. Note that using ad-
dition mod 1 is just a convenient way of coding this
equation. We could use a five-dimensional equa-
tion in accordance with our developed techniques
and obtain the same figure. The significance of this
LZ, ZE map is that the spatial orbit structure in ap-
pearance is clearly more complex than that of Fig. 2
which was produced by a LP map.

Figure 5 is produced by using Eq. (43) with
a coordinate transformation defined by a twisting

map. This demonstrates that an attractor’s geom-
etry can be separated from its level of complexity.
Figure 6 demonstrates that other coordinate trans-
formations can give the attractor any geometry we
like. The specific coordinate transformation is not
important. What is relevant is that the attrac-
tor can appear “strange” in one coordinate system
while “familiar” in another.

Figure 7(a) illustrates a one-dimensional LZ
map, f(x). This example is due to Kakutani, see
[Parry, 1981]. This map is far from chaos by any
definition in that the orbits are slightly more com-
plex than almost periodic orbits. But by making it
a component of a three-dimensional map we reveal
that it can produce an attractor which appears to
have a high level of complexity, Fig. 7(b). The exact
equation for Fig. 7(b) is as follows:

T

wz
u

 =

 f(w)

z + w

au

mod(1) (44)

where 0 < |w|, |z|, |b| < 1. The “holes” in the at-
tractor in Fig. 7(b) are not repelling regions, but
rather reflections of the orbit correlation of the func-
tion f . If we iterate long enough, the entire square
will be covered with the points of the orbit.

Taking a different turn we may ask if we can
construct an example which is globally LZ for which
there are times it is locally not LZ. This amounts
to seeking an example which, when the exponents
are averaged over infinite time, the exponents are
not positive, but for which over finite periods of the
orbit they are positive. Clearly, if there are some
runs of positive exponents there must be some runs
of negative exponents to force the average to be
zero.

It is possible to construct any number of such
maps on the unit interval so long as we allow a
countable number of discontinuities. The process
requires that the interval be partitioned into subin-
tervals and on each subinterval we define our func-
tion to be increasing and differentiable. Further, on
the set of subintervals the functions must be chosen
to be invertible. Figure 8 is an example.

In Fig. 8(a) we construct a map, g(x), with
LZ and E. As a result, the computation of the
Lyapunov exponent is reduced to the fundamen-
tal theorem of calculus and we see that the
total percentage of expansion must equal the
total percentage of contraction so that the net is 0.
Figure 8(b) reveals that this map produces a dis-
tribution of orbit points that is quite uniform. The
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map for Fig. 8(b) is the same as Eq. (44) where f
is replaced by g.

Thus there are LZ maps which are WX, SD,
and ZA, but are not B or even K. It is not known
whether the map of Eq. (36) is SX for the right
choice of a. These maps can be made Poincaré maps
for ODEs which can be implemented in useful elec-
tronic circuits by the techniques of Brown and Chua
[1993].

4. Strange Attractors and
Space-Time Chaos

4.1. The phenomena of strange
nonchaotic attractors

Numerous researchers have reported on strange
nonchaotic attractors. An early paper is that of
Grebogi et al. [1984]. The paper of Ding et al.
[1989] is an important development of the 1984 pa-
per. The authors sought to bring attention to the
fact that an attractor may have complex geome-
try without arising from LP maps. The 1989 work
sought to show how this fits into the scheme of non-
linear dynamics. We show here that the matter of

nonchaotic strange attractors can be traced to low-
orbit correlation. But first we address the 1984 and
1989 examples.

The skew translation of Eq. (36) may be mod-
ified to be nonlinear as follows:(

x

y

)
→
(
f(x, y)

y + a

)
mod(1) (45)

where a is a constant. We remind the reader that
the use of the mod(1) function is only a conve-
nience and may be replaced by elementary func-
tions by increasing the dimensions of our space.
From this equation it is clear that the equations of
Grebogi et al. [1984] are nonlinear skew transla-
tions as is also the case with the equations of Ding
et al. [1989]:(

xn+1

θn+1

)
=

(
f(xn, θn)

(θn + 2πω)mod(2π)

)
. (46)

As with proving that maps are chaotic by proving
the existence of horseshoes, for this line of analysis
to be complete it would be necessary to show that
the time-one maps of the ODE that are analyzing

Fig. 9. Figure 9 demonstrates that the nonlinearities of the Grebogi, Ott, Pelikan and Yorke nonchaotic SA are not essential
to obtain nonchaotic strange attractors. To obtain this attractor we have modified Eq. (36) to have an eigenvalue of 0.9999.
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Fig. 10. Figure 10 is obtained by introducing a nonlinearity into the equation used to obtain Fig. 9. Introduction of the
nonlinearity results in the formation of bending in the attractor.

Fig. 11. In this figure we show that the process used to obtain a nonchaotic SA in Fig. 9 can also be used to produce a
chaotic SA. Figures 9 and 11 demonstrate that the effect of damping is to reduce the level of complexity.
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Fig. 12. This figure is made from Fig. 11 in the same way that Fig. 10 is made from Fig. 9, by introducing a nonlinearity.
The result is the same: The nonlinearity introduces bending into the attractor.

Fig. 13. This figure is a graph of a WX mapping, x → f(x), which is not SX constructed by Kakutani. It is LZ. All
eigenvalues are 1, hence this map does no stretching.
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Fig. 14. In this figure we show an orbit of a map constructed from the map of Fig. 13. To get a two-dimensional image,
we have formed the cross product of this mapping with itself, (x, y)→ (f(x), f(y)). The resulting mapping is also WX and
LZ. The orbit shows a high degree of structure. A microscopic examination shows that the orbit has some level of complexity
as well.

Fig. 15. In this figure we add a small measure of damping to the map in Fig. 14. The resulting map is (x, y) → (f(x),
0.999999 f(y)). Several orbits are shown, distinguished by different colors. Since the orbits are not standard curves, they are
nonchaotic strange attractors.
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Fig. 16. This figure is constructed from the map in Fig. 7(a) by forming the direct product as we did in constructing Fig. 14
from Fig. 13. Four orbits are shown as indicated by the four colors. The presents of multiple distinct orbits shows that the
map is not E.

are conjugate to a skew translation on some subset
of its domain.

We now demonstrate that the nonlinearities of
their maps are irrelevant to the existence of non-
chaotic strange attractors. We modify Eq. (36) to
have an eigenvalue less than 1:(

x

y

)
→
(
αx+ y

y + a

)
mod(1) (47)

and obtain the attractor in Fig. 9.
By making the map nonlinear we can routinely

introduce bending into the attractor [Fig. 10].
The explanation of the formation of nonchaotic

strange attractors is that if the orbits of a map are
uncorrelated in time, the geometry of the orbit can
become uncorrelated in space. Skew translations
can have ZA, and hence their dampened orbits can
be made to look peculiar, depending on how the
damping factor is included in the equation of the
map.

In general, in the presence of damping, the cor-
relation of the orbits of a map can vary from 0 to
1, depending on the size of the damping factor, and
this level of correlation may be reflected in the spa-
tial geometry of the orbits. But note that printed

geometry, i.e. pictures, are a subjective element of
human cognition, and what is peculiar is quite rela-
tive. It is possible to force the dampened uncor-
related orbits to take on familiar forms as well.
Figure 4 demonstrates this. The attractor is a
square. The effect on visual presentation of orbits
is a function of how the damping is inserted in the
equation. This distortion can happen for any map
whose orbits lack some degree of correlation.

To further illustrate these ideas, if we modify
the cat map to have damping, we may also get dis-
torted attractor geometry as seen in Fig. 11.

The map for Fig. 11 is(
x

y

)
→
(

2x+ y

x+ (1− 0.5α)y

)
mod(1) . (48)

The parameter factor multiplying y is chosen to
make the determinant of this map 1−α. In Fig. 11,
α = 0.02.

By making the cat map nonlinear we cause the
orbits to bend, as seen in Fig. 12.

The equation for Fig. 12 is(
x

y

)
→
(

2x+ sin(βy)2

x+ (1− 0.5α)y

)
mod(1) (49)
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where β = 1.8. Figure 12 bears resemblance to the
figures in [Brown & Chua, 1996b] where the funda-
mental map is presented. By construction, the fun-
damental map provides an orderly evolution from
periodic to chaotic that encompasses skew transla-
tions and nonchaotic strange attractors. For the
inverse of this idea, Fig. 1 is an example of a non-
strange chaotic attractor in that the attractor is a
square. It is possible to make a nonstrange chaotic
attractor in the form a circle, straight line, or any
simple geometric shape, except, possibly, a count-
able set of points.

Maps producing strange attractors have some
level of complexity such as ZA, LP, or SD because
the geometry is a reflection of orbit correlation.
Thus the existence of strange attractors (SA) is a
level of complexity we may add to our list of other
measures. What we have seen is that the lower
end of the level of complexity spectrum is periodic,
and almost periodic dynamics. Next appears to be
E, SD, WX, ZA, followed by LP. But this is not a
totally ordered system, is it a partial order where
SD is found in almost-periodic systems such as the
twist on the two-dimensional torus. Of all the mea-
sures of complex dynamics, ZA and LP are the most
general, but do not form a total ordering. Even
by adding entropy we cannot obtain a single set of
characteristics forming a total ordering. Either na-
ture is being very capricious, or we just have not
yet found the right measurements.

Relative to rotations, skew translations are
quite complex, so we now ask the question How
low a level of complexity is needed to get SA?. We
present two examples. We begin with the WX
map of Kakutani, see [Parry, 1981]. WX is mildly
complex, but much less so than skew translations
may be. Further, WX does not have to involve
any stretching, contrary to what some authors have
suggested. In fact the map of Kakutani is LZ
[Fig. 13].

We present only the geometric form of this map
due to its complicated definition found in [Parry,
1981]. Since this map is WX, its cross product is
also WX and this is illustrated in Fig. 14. As can
be seen, there is a large measure of global structure
to an orbit, but on the detail level there is ample
variation. If iterated long enough, the orbit will be
dense, so the “empty” places in the figure do not
indicate repelling regions.

By adding a small amount of damping, we get
the attractor in Fig. 15, which may be termed
strange.

Our last example of the phenomenon of non-
chaotic SA demonstrates the considerable level of
order that may be present and still obtain SA. We
take the map of Fig. 7(a) to construct a strange at-
tractor. This map, also constructed by Kakutani,
is only E, and further, it has only discrete spectrum
[Parry, 1981]. In simple language this means that
among all E maps this type of E map is the sim-
plest. For example, it is known that all E maps with
discrete spectrum are group rotations. To obtain a
two-dimensional illustration we form the cross prod-
uct of this map with itself, and include a parameter,
α, we can vary:(

x

y

)
→
(
f(x)

αf(y)

)
. (50)

In Fig. 16, α = 1.0, we show typical orbits of
this map, which is not E, hence orbits are not dense.
The different orbits are indicated by different colors.
The orbits of f have a level of correlation ranging

Fig. 17. This figure is obtained from Fig. 16 exactly as
Fig. 15 was obtained from Fig. 14, by adding a small mea-
sure of damping to one coordinate, α = 0.999. The result
is the formation of nonchaotic strange attractors. Numerous
orbits are shown as distinguished by the different colors. All
orbits are strange in shape. This may be the weakest level of
dynamics that can form nonchaotic strange attractors.
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from about 0.55 to over 0.90, and the autocorrela-
tion is nearly periodic.

In Fig. 17 we choose α = 0.999, which is enough
damping to form attractors. Figure 17 shows that
the basins of attraction are in the shape of a block
letter “S”. There are multiple basins, as indicated
by the numerous colors, but some colors have been
used twice. This is not important, however, since
the point is that the various attractors are peculiar
in shape, all have about the same shape, and there
are many basins of attraction.

We conclude that the strangeness of the geome-
try of an attractor plotted on a computer screen is a
result of the amount of damping, how the damping
occurs in the definition of the map, and most impor-
tant, the correlation of orbits. The exact value of
the initial conditions may be a factor also. Clearly,
the association of SA with chaos is a coincidence of
the orbit correlation found in chaos. The level of
complexity found in chaos and even in skew trans-
lations is far more than needed to obtain this inter-
esting phenomenon.

4.2. Initial conditions versus
algorithms

The examples of the preceding sections have demon-
strated the need to determine when two points are
correlated. We may define correlation of two points
as follows: We first discard their integer part and
consider only the fractional part of the number. We
now consider their fractional part as a sequence of
integers between 0 and 9. As sequences, we may
apply the usual formula for correlation of two se-
quences to obtain the desired definition.

Using this definition, we have the following
observation whose proof poses no mathematical
difficulties.

Let x0 be any point in space, and let U(x0)
be any neighborhood of x0, however small. Then
within U(x0) there are many points that are uncor-
related to x0.

This means in simple terms that near any point
are countless points that are uncorrelated with it
and that the location of the uncorrelated points is
in essence a random walk from x0.

The significance of this fact is that any dynam-
ical system that acts on two uncorrelated points in
such a way as to move the insignificant, lower-level,
digits up into a higher position of significance will
be reflected in a complex relationship between the
orbits of these two points. Hyperbolic systems are

capable of doing this. The shift is defined to do pre-
cisely this and nothing more. Different algorithms
have varying abilities to elevate the role of lower-
level digits into significance, and this is reflected in
our notions of E, WX, SX, etc. The significance
of this reaches a maximum when applied to points
having positive algorithmic complexity. These are
points which cannot be described by a finite algo-
rithm and hence, cannot be reached by finite it-
eration of a finite algorithm. Such points cannot
be spatially correlated to points having zero algo-
rithmic complexity. For example, any dynamical
system which moves lower-level digits into signifi-
cance has a level of complexity of its orbit solely as
a result of the algorithmic complexity of its initial
condition. We may think of this as the extreme of
spatial complexity. The lack of correlation between
two points each with zero algorithmic complexity is
philosophically less extreme.

Any dissipative dynamical system that treats
uncorrelated points differently and correlated
points similarly can have many basins of attraction
as well as very complex-looking attractors.

We have traditionally viewed distance, i.e. met-
rics, as our primary measure of significance. How-
ever, correlation between points appears to hold an
equally significant role in science and is more re-
sponsible for the levels of complexity we see in the
universe than anything except those dynamical sys-
tems that elevate the lower-levels of complexity of
points into positions of significance.

As a result, at least two numbers are neces-
sary when comparing two quantities: their distance
apart and their correlation. Their distance is a mea-
sure of the present; their correlation is a measure of
their potential future relationships. Of these two
measurements, clearly correlation is the most illu-
sive and accounts for much of the uncertainty of
the future. When two quantities are uncorrelated,
their future depends solely on the type of dynamics
they undergo. In weather systems, dynamics can
fluctuate drastically from almost periodic upward,
and thus uncorrelated quantities can fluctuate from
having an almost-periodic relationship to a near-
random relationship.

We have talked of uncorrelated quantities with-
out being specific about the level of uncorrelation.
Consequently, we ask: How is the level of corre-
lation between quantities reflected in their future
under given dynamical systems?

A simple question that we can answer
is whether a simple rational or integer-initial
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condition can converge to something complex, but
not having positive algorithmic complexity, under
the action of a dynamical system. The answer is
yes. Any algorithm for the computation of the dig-
its of π is an example. As noted in Part I of this
tutorial, published last year, the Chudnovsky broth-
ers have shown that the digits of π are as complex
as the outputs of typical random-number genera-
tors. Next we ask if we may construct an algorithm
having multiple basins of attraction which converge
to two different “complicated” irrational numbers.
The answer is yes, and the number of attractors may
be made as large as you like. A typical example is

x→ h1(x)f(x) + h2(x)g(x) (51)

where f →
√

2, g →
√

63 and h1(x) is 1 near
√

2
and 0 near

√
63, and h2(x) has the opposite spec-

ifications. If we start near either square root with
a simple rational initial condition we converge to
that square root, an irrational number. Hence it is
a fact that we can use a finite algorithm to start
at a simple initial condition and then, using this
algorithm, be attracted to a complicated irrational
number that tells us that dynamical systems can
create some level of complexity, but not positive al-
gorithmic complexity. We conclude that time can
create a level of complexity and that space has an
initial relative level of complexity. The spatial level
of complexity is made more elusive by the mathe-
matical fact that points exist with positive algorith-
mic complexity. The center of mass of a particle
which is not initially located at a point of positive
algorithmic complexity in a fixed-coordinate system
can reach such a point — if the laws of nature have
an expression as a finite algorithm — in only one
of two ways: The algorithm involves a constant of
positive algorithmic complexity, which contradicts
its finite characterization; or it reaches the point
at a moment in time of positive algorithmic com-
plexity. However, particles having a center of mass
with rational coordinates can converge to points
having very complex coordinates in time under the
action of a dynamical system that is expressible as a
finite algorithm, regardless of the role of the time-
coordinate.

We emphasize that the conclusions drawn are
based on the relative spatial positions of points in
a fixed-coordinate system. If the laws of nature
are truly expressible as finite algorithms, then in-
finitely small particles located at some points can
never reach other points within the same coordinate

system in finite time. We repeat that this is signif-
icant only on a microscopic scale in which particles
are vanishingly small. Hence, the theory of chaos
implies a fine, complex structure of the fabric of
the universe, if only in the abstract.

Our theory of chaos thus implies the existence
of both a spatial and a temporal level of complexity.
The spatial level of complexity is revealed by the de-
gree of correlation between points and the absolute
relative level of complexity of points within a fixed
coordinate system. Temporal level of complex-
ity is revealed by the action of finitely-describable
dynamical systems on points located at perfectly
simple coordinates such as rational or integer co-
ordinates. The level of complexity of things thus
emanates from these two sources through the myr-
iad of dynamical systems that have varying abilities
to move lower-level complexity of physical quanti-
ties into positions of significance for measurement
and prediction purposes.

5. Sources of Nonlinearity

In [Brown & Chua, 1997] we described the com-
plexity spectrum and noted that understanding this
spectrum is prerequisite to understanding chaos. In
order to fully understand the sources of levels of
complexity in the complexity spectrum it is nec-
essary to understand the sources of nonlinearity, a
key feature in the production of a given level of
complexity. Nonlinearity is not a necessary feature
for the production of a level of complexity, as we
saw in the previous section, but nonlinearities are
among the most interesting sources of high levels of
complexity.

The simplest venue within which to investigate
the sources of nonlinearities is the two-dimensional
autonomous ODEs. The only simpler venue could
be one-dimensional ODEs, or maps, but we believe
that this venue is harder to approach in a simple
orderly manner than the two-dimensional systems
because interesting one-dimensional maps are either
not invertible or not continuous.

The Poincaré–Bendixon theory would appear
to completely answer all questions about the class
of two-dimensional autonomous ODEs; however, on
closer examination we see that this theory provides
no insight into the construction of equations with
specific nonlinear features, nor does it even sug-
gest an organization of this topic. It is the vary-
ing ways in which nonlinearities may occur in two-
dimensional autonomous ODEs that will provide us
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with the insight into the role that these systems play
in the development of a level of complexity, not a
classification of their periodic points as presented
by Poincaré–Bendixon theory.

5.1. The twist equation

In Davis’ Introduction to Nonlinear Differential and
Integral Equations [1962] the dominant source of
nonlinearities in ODEs is revealed as being the oc-
currence of nonlinear frequencies in the solutions of
the ODEs. A simple example of this is the twist
ODE (

ẋ

ẏ

)
= r

(
0 −1
1 0

)(
x

y

)
(52)

where r =
√
x2 + y2. The time-one (or Poincaré)

map is the simple twist map which was used to
derive the twist-and-flip map, the first closed-form
Poincaré map of an ODE having chaotic solutions.
This equation was derived by asking the question:
What is the simplest way in which a linear equation
can be made nonlinear? Since, in the linear oscilla-
tor the initial conditions determine the amplitude
of the system, a simple step would be to consider
the family of curves given by(

x(t)

y(t)

)
=

(
r cos(rt+ θ)

r sin(rt+ θ)

)
(53)

where r is given above and is a function of the ini-
tial conditions. Since r affects both amplitude and
frequency, the ODE that this system solves must
be nonlinear. The effect of multiplying t by a func-
tion of the initial conditions is to cause neighbor-
ing orbits to separate, at different speeds. The
orbits of the twist ODE in the phase plane are
identical to those of the linear equation it was de-
rived from. This procedure was shown to be very
general in [Brown & Chua, 1993]: Given any lin-
ear autonomous ODE in any number of dimensions
there is an infinite family of nonlinear autonomous
ODE having the same set of orbits, fixed points,
and types of fixed points.3 The solutions differ only
in that, in the nonlinear case, t is multiplied by a
function of the initial conditions that are constant
along orbits.

5.2. Example two: Nonlinear
amplitude equation

We now ask if it is possible to generate a nonlinear
system in which t is not multiplied by a function of
the initial conditions but whose amplitude is a func-
tion of the initial conditions. The answer is yes, and
the ODE is derived from the curves given by(

x(t)

y(t)

)
=

(
r cos(t+ θ)

r2 sin(t+ θ)

)
(54)

where r is a function of the initial conditions given
by r2 = 0.5(x2 +

√
x4 + 4y2). By direct compu-

tations the following system of autonomous ODEs
can be derived:(

ẋ

ẏ

)
=

(
0 −1/r

r 0

)(
x

y

)
(55)

where r2 = 0.5(x2 +
√
x4 + 4y2) is a constant along

integral curves. This system has a feature in com-
mon with the ODE ẍ + x3 = 0 in that the shape
of the integral curves varies with the initial condi-
tions [Fig. 18]. The twist equations also have a fea-
ture in common with this second order ODE: The
frequency varies with the initial conditions. How-
ever, in the twist equations, the solutions are all
circles, thus the amplitude is essentially what we
expect from a linear system. In the amplitude sys-
tem, the frequencies are not a function of the initial
conditions. Hence, the twist equations and the am-
plitude equations have completely separated two of
the three features of nonlinear systems illustrated
by ẍ+ x3 = 0. The third feature, variable velocity
along points of a single orbit, will be discussed in
the next example.4

A natural question is whether the amplitude
equation with periodic forcing produces chaos as
well. The answer is yes.

By a direct computation a time-one or Poincaré
map can be derived for the amplitude equation:

A

(
x

y

)
=

(
cos(θ) − sin(θ)/r

sin(θ)r cos(θ)

)(
x

y

)
(56)

where θ is a fixed time interval. The orbits of
this map are ellipses [Fig. 18]. For small initial

3This fact alone shows that the classification of periodic points and limit cycles is inadequate to describe the nonlinear dynamics
of two-dimensional autonomous systems.
4As is known, when this later second order ODE is driven by a periodic force, it produces chaos. In fact ẍ + x3 = a cos(t) is
Duffing’s equation without the damping term.
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Fig. 18. In this figure we show the orbits of a nonlinear
equation. Each orbit, considered by itself, is linear, varying
from horizontal ellipses (yellow), to a circle (red), to vertical
ellipses (dark blue). The relationship between the orbits is
the source of the nonlinearity.

conditions the semi-major axis is horizontal (yel-
low orbits); for large initial conditions it is vertical
(dark-blue orbits). Therefore one orbit is circular
and, as seen in Fig. 18, red.

To obtain chaos using this nonlinear effect we
must add forcing to the ODE, and this is done ex-
actly as we did for the twist-and-flip equations. Do-
ing this we can obtain a Poincaré map and have the
analog of the twist-and-flip map which we will call
FA. As with the twist-and-flip map we must offset
the center of the integral curves by an amount a.
After this is done our resulting map is

FA

(
x

y

)
=−

[(
cos(θ) − sin(θ)/r

sin(θ)r cos(θ)

)(
x−a
y

)
+

(
a

0

)]
(57)

and the orbits are seen in Fig. 19.
This map has no hyperbolic fixed points but

does have high-order hyperbolic periodic points.
For θ = 2.0, a = 0.5 a period-six hyperbolic point is
found at approximately (1.0433, 1.1997). By direct
inspection this point is found to have a horseshoe.
This example illustrates the contribution of the ge-
ometry of the orbits to producing chaos.

Fig. 19. In this figure, we demonstrate that by combining
the map of Fig. 18 with a flip we obtain chaos, just as is done
with the twist. As is shown in the figure, the full array of
island chains (dark blue) and homoclinic tangles (light blue)
are formed.

5.3. Example three: The Jacobi
equation

All two-dimensional vector fields can be put into
the form: (

ẋ

ẏ

)
=

(
ṙ

r
I + θ̇B

)(
x

y

)
(58)

where I is the identity matrix and B is the matrix(
0 −1

1 0

)
. (59)

When ṙ = 0 we get the equation:(
ẋ

ẏ

)
=
(
θ̇B
)(x

y

)
(60)

the orbits must be circles, the same as the sim-
ple harmonic oscillator and the twist equation. For
θ̇ = 1 we obtain the simple harmonic oscillator. For
θ̇ = r we obtain the twist. However, if

∂θ̇

∂r
= 0 (61)
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we are still in a position to obtain closed-form solu-

tions. If θ̇ =
√

1− k2 sin2(θ) we obtain the closed-
form solution(

x(t)

y(t)

)
=

(
r cn(t+ C)

r sn(t+ C)

)
(62)

where sn, cn are the Jacobi elliptic functions. We
call this the Jacobi Equation. These functions are
the inverses of elliptic integrals and are derived in
the classical problem of rectifying the ellipse.

Since θ̇ is not a function of r, the angular ve-
locity does not change from orbit to orbit as was
the case with the twist system. In fact, this system
preserves lines through the origin and through any
complete revolution a line or a region is mapped
onto itself. The source of the nonlinearity is that
along an orbit, the arc length is expanded and con-
tracted in a periodic manner. In this system, mat-
ter is neither created, as happens in systems having
a source, nor destroyed, as happens with systems
having a sink, but rather is alternately compressed
and stretched.

This system can be used to obtain chaos by
the standard two-phase gate method: If we trans-
late the system to (a, 0) and compose it with the
flip we obtain a Poincaré map that produces chaos
while having only periodic hyperbolic points and
no hyperbolic fixed points. The origin of chaos in
this system is solely from the nonlinear acceleration
taking place around circles.

A limitation of the Jacobi Equation is that the
Jacobi elliptic functions, sn(t), cn(t) are not elemen-
tary functions. However, the time-one map deter-
mined by these equations can be constructed from
elementary functions. For anyone wanting to pro-
ceed by constructing an example which avoids the
use of the Jacobi Equation, we offer the following
digression:

We may construct an example having these ex-
act same properties which is solvable in terms of ele-

mentary functions. In place of θ̇ =
√

1− k2 sin2(θ)

we simply choose θ̇ = 2−sin2(θ), which is integrable
in terms of elementary functions. Specifically, we
have

sin(θ) =

√
2 sin(ψ)√

1 + sin2(ψ)
(63)

and

cos(θ) =
cos(ψ)√

1 + sin2(ψ)
(64)

where ψ =
√

2(t + C), C being the arbitrary con-
stant of integration determined by the initial con-
ditions. Since ṙ = 0, we can write the solution in
rectangular coordinates from the above information
and the initial conditions. Specifically,(

sin(ψ)

cos(ψ)

)
=

(
C1 cos(

√
2t)− C2 sin(

√
2t)

C1 sin(
√

2t)− C2 cos(
√

2t)

)
(65)

with

C1 =

√
2x0√

2x2
0 + y0

, C2 =
y0√

2x2
0 + y0

. (66)

The significance of these systems as a building-
block of a level of complexity is twofold. First, the
nonlinear acceleration around orbits of these two
equations, when composed with simple linear fac-
tors, gives rise to chaos even though the nonlin-
earity is of the simplest conceivable form, far sim-
pler than the twist map in that it has no shearing.
Second, two observers traveling on nearby orbits
lying on the same radial line will not experience
relative motion. Further, observers riding on sep-
arate orbits will never separate by more than a
fixed but small distance. It is nearly the oppo-
site of sensitive dependence on initial conditions.
Two observers riding on the same orbit will oscil-
late relative to each other while still remaining is
circular motion. This stretching and compressing
of arc length around the orbit means that the vec-
tor field has a nonzero divergence while having no
sources or sinks. Matter is never created or de-
stroyed as when there are attractors or repellers in-
volved; it is only compressed and stretched. The
result of this feature is that when it is composed
with simple components such as the flip, chaos is
created by a subtle process. In addition, a very un-
expected result appears: Local attracting periodic
points are mixed in with periodic, quasi-periodic
and chaotic orbits [Fig. 20]. This is due to the
nonzero divergence of this system. If the divergence
were a result of sinks or sources, we would expect
to obtain global attractors or repellers. But this is
not what is found. The existence of local attract-
ing fixed points also depends on the magnitude of
the flip component used to compose these maps.
Only certain flips combined with the right initial
conditions can give rise to this unusual phenom-
ena. Figure 20 illustrates beautifully the kinds of
orbits possible with the Jacobi map as a factor. The
presence of measure-preserving chaotic and elliptic
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Fig. 20. Figure 20 is an example of a remarkable phenomena, the coexistence of local attracting periodic points (light blue
orbits converge to period-three points) with nonattracting regions. A chaotic region having a homoclinic tangle is shown in
red. This phenomena results from the nonzero divergence of the Jacobi equation.

orbits combined with period three attractors sug-
gests the possibility of such systems existing in na-
ture. The work of Freeman [1996] on the attractors
of the brain combined with the nonattractor nature
of common brain waves suggests that the brain is
a system with these properties. This system may
one day also explain how complex structures such
as the spinal column can form from dynamical sys-
tems composed of simple components.

Three sources of autonomous, integrable non-
linearity in two dimensions are thus illustrated by
these three equations: the twist equation, the am-
plitude equation and the Jacobi Equation. The
twist equation is the most readily available source
of chaos and it has zero divergence. The second of
the two equations provides a source of asymmetry
and subtlety not found in the twist equations and
also has zero divergence. Two of these equations
are induced by linear equations; all three have only
linear orbits. In particular, the orbits are either
ellipses or circles.

5.4. Example four: Nonlinear orbits

In the preceding three examples we imposed a

constraint that the individual orbits of the ODE
be linear and observed that nonlinearity could arise
from three different sources: nonlinear frequencies,
nonlinear relationships between neighboring orbits,
and nonlinear divergence. Another source of non-
linearity must be nonlinear orbits.

We now illustrate how to obtain a nonlinear
system that: (1) can be solved in closed form; (2)
is not induced by a linear system; (3) whose orbits
are not linear; (4) which preserves lines through the
origin; and (5) which has zero divergence. We use
the form of a vector field mentioned above:(

ẋ

ẏ

)
=

(
ṙ

r
I + θ̇B

)(
x

y

)
(67)

and make two assumptions. The first is that its
underling group is measure preserving or, what
is the same thing, the vector field is divergence-
free. The second is that the system preserves lines
through the origin. Using these two assumptions
we derive the following partial differential equation
for ṙ:

1

r
〈X,∇ṙ〉+

ṙ

r
+ 〈BX, ∇θ̇〉 = 0 . (68)
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Fig. 21. Figure 21 illustrates the orbits of a nonlinear system that: (1) can be solved in closed form; (2) is not induced by a
linear system; (3) whose orbits are not linear; (4) which preserves lines through the origin; and (5) which has zero divergence.

With the following notational convention we obtain
the PDE in standard form. Let(

ṙ

θ̇

)
=

(
g(x, y)

f(θ)

)
. (69)

Now the PDE becomes

xp+ yq = −(z + rf ′(θ)) (70)

where p = zx q = zy, z = ṙ = g(x, y). The general
solution is given by

z = h(x, y)F (x/y) (71)

where h is dependent on f ′(θ). If we assume that
cz = rf ′(θ) is the form of the solution, then we
obtain the following consistency equation to check:

xp+ yq = −(c+ 1)z . (72)

All of these assumptions would be fine if the so-
lution of the resulting equation is consistent with
these assumptions. By an application of standard
methods for solving first-order partial differential
equations we get

z =
y

−(c+ 1)
F (x/y) . (73)

The consistency check we must make is to see
whether

rf ′(θ) =
y

−(c+ 1)
F (x/y) (74)

is possible. Since y = r sin(θ), x = r cos(θ) we see
that if we choose f(θ) = a+ b sin(θ), everything is
consistent. In particular, we have

r = r0

(
f(θ0)

f(θ)

)1/c

(75)

and the first part of the solution is done. Now, if
we choose a > b, the equation θ̇ = a + b sin(θ) is
solvable in closed form for sin(θ). Using a standard
table of integrals we get

b+ a sin(θ)

a+ b sin(θ)
= sin(kt+ C0) (76)

where k =
√
a2 − b2, and C0 is a constant of inte-

gration to be determined from the initial conditions.
From this relation we obtain sin(θ), cos(θ) and we
are done.
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Fig. 22. In this figure we combine the map of Fig. 21 with a
flip to obtain chaos. Familiar island-chains (red) and chaotic
regions (blue) are formed.

The general solution in rectangular coordinates
is given by:

(
x(t)

y(t)

)
= r0

(
f(θ0)

f(θ)

)1/c
(

cos(θ)
sin(θ)

)
(77)

where we must have c > 1. Note that the root fac-
tor is not a constant since f(θ) is a function of time.
The orbits cannot be linear, see Fig. 21, and, by con-
struction, the system is divergence-free. Using the
two-phase gate method, we may make this map a
component of a Poincaré map which produces chaos
[Fig. 22].

5.5. Example five: Nonzero
divergence, with nonlinear
orbits

It is possible to obtain nonzero divergence equations
that are just as useful. One option is to solve the
PDE xp+ yq = z and the choice

ṙ = −rf ′(θ) (78)

Fig. 23. Figure 23 illustrates the orbits of a nonlinear sys-
tem that is the analog of Fig. 21, but which has nonzero
divergence.

with θ̇ = f(θ) 6= constant gives the closed-form so-
lutions in rectangular coordinates:

(
x(t)

y(t)

)
= r0

f(θ0)

f(θ)

(
cos(θ)

sin(θ)

)
. (79)

Note that if θ̇ = −1 and ṙ 6= 0 we also get nonzero
divergence.

This process can be greatly generalized. If
θ̇ = f(θ) and r = C0G(θ) we get an autonomous
ODE:

ṙ = C0G
′′(θ)f(θ) (80)

where C0 is eliminated from this equation by not-
ing that C0 = r/G(θ). So long as θ̇ = f(θ) is
solvable in closed form, we are done! For exam-
ple, choose f(θ) = 2 − sin2(θ). By use of a table
of integrals we find that we can solve this equation
for sin(θ), which is all that is necessary to express
the solution in rectangular coordinates. By choos-
ing G(θ) =

√
f(θ)(1 − 0.95 sin(sin(θ)) we get the

orbits of Fig. 23.
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Fig. 24. In this figure, we compose the time-one map of Fig. 23 with a linear translation to get the Poincaré map for an
electronic circuit using a two-phased gate. Just as in Fig. 20, local attracting periodic points form with nonattracting regions
to produce a remarkable combination of dynamics: In dark blue are elliptic regions; in light blue and yellow are chaotic regions
containing homoclinic tangles; in red are orbits that converge to a set of period-three points.

By composing this autonomous time-one map
with a shift, we get the chaotic orbits of Fig. 24.

This system, like the Jacobi Equation, when
composed with linear maps by the method of
two-phase gates can generate local attracting
fixed points alongside periodic, quasi-periodic, and
chaotic orbits which are not attracting. The yel-
low orbits are chaos, the red are orbits being at-
tracted to the period-three points. The light-blue
are orbits of transient chaos that also converge to
the period-three points. The dark-blue orbits are
elliptic, hence represent almost periodic solutions
of the ODE. Near the small yellow orbits we find
chaotic, almost-periodic, and transient-chaotic so-
lutions coexisting.

5.6. Summary of nonlinear effects

In this section we have given five examples to
illustrate four ways that nonlinearities may arise
in autonomous two-dimensional ODEs: (1) nonlin-
ear frequencies along linear orbits; (2) nonlinear
relationship between linear orbits; (3) nonlinear
divergence along linear orbits; (4) nonlinear or-

bits. These nonlinear effects may be combined as
seen in Examples 4 and 5 to increase the level of
complexity of an orbit. These effects present a
different approach to autonomous systems than
that provided by an analysis of its fixed points
(Poincaré–Bendixon theory) because the nature of
these effects contribute directly to the development
of a level of complexity in nonlinear nonautonomous
equations such as the Duffing equation. As shown
in [Brown, 1992], any of these autonomous systems
may be used in a construction that leads to au-
tonomous three-dimensional equations that is the
analog of the two-phase gate method. In this way,
it is possible to construct ever increasingly com-
plex examples of autonomous or nonautonomous
systems with any predetermined level of complexity.
The practical aspect of this lies in the applications
of chaos to diverse areas of the mathematical and
life sciences. The theoretical importance lies in the
fact that the development of a theory of levels of
complexity will have as its foundation a rich set of
examples and counterexamples that can be used to
guide the formulation and proof of the mathemati-
cal and physical theories.
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6. Relationships Between
Attractors, Noninvertiblity,
and Nondissipative Maps

Preliminary to this section we present some
comments on dissipation, noninvertibility, and
nonorientation-preserving properties of dynamical
systems and their relationship to chaos.

6.1. Chaos and attractors

Many scientists associate chaos only with strange
attractors or dissipative systems. For example,
the Lorenz, Chua and Rossler equations are all
dissipative. Historically, however, chaos was first
mentioned5 as a nondissipative system. Chaos and
attractors are independent concepts, and the most
complex forms of chaos occur in nondissipative sys-
tems. In fact, the presence of dissipation reduces
the level of complexity and thus reduces the “level”
of chaos.

6.2. Chaos and noninvertibility

Noninvertible systems are inherently more complex
than invertible systems. This is best illustrated by
the fact that noninvertibility is a sufficient condi-
tion for a system to have positive entropy. Nonin-
vertible systems do not directly arise from solutions
of differential equations. This suggests that nonin-
vertibility is a source of a level of complexity.

6.3. Nonorientation preserving
and chaos

Orientation-preserving maps are those for which the
Jacobian determinant is positive. The significance
of this is that nonorientation-preserving maps can-
not arise from the solutions of differential equations
whose Jacobian is positive. There are many chaotic
maps which are not orientation preserving; most
notably, there are parameter values for which the
Jacobian derivative of the Hénon map is negative.
Hence, nonorientation-preserving maps are a source
of some level of complexity. In this section we
clarify some important relationships between dy-
namical systems having these three properties to
give a perspective of how they contribute to the de-
velopment of a level of complexity and to remove
any confusion about their contribution to the pro-
duction of chaos.

We summarize the relationships in a series of in-
formal statements which can be rigorously proven.

Statement 1.

Any dissipative system that arises from an ODE can
be converted to a nondissipative system without al-
tering the fundamental level of complexity. Specifi-
cally, for any dissipative system we may increase the
dimension of the system by one and make it, essen-
tially, nondissipative. The construction is simple.
Let T (X) be any n-dimensional dissipative system.
Since it arises from an ODE, the Jacobian determi-
nant, det(DT (X)), must be positive. The following
mapping “contains” T in an obvious sense and is
nondissipative:(

X

z

)
→
(

T (X)

z/(det(DT (X)))

)
. (81)

This map expands in the direction of the added
coordinate z by exactly the amount needed to keep
the combined map nondissipative. Also, in this map
T remains “intact.” The Jacobian determinant of
the combined map is 1.

Statement 2.

Any noninvertible mapping can be made essen-
tially invertible by doubling the number of coordi-
nates. This was proven in [Brown & Chua, 1996b,
Theorem 1] and is restated here for completeness.

Statement 3.

Any nondissipative map can be made dissipative
in such a way that the original map is an attrac-
tor. Theorem 1 mentioned above also proves this
statement.

Statement 4.

Any nonorientation-preserving mapping can be
made orientation-preserving by increasing the di-
mension by one. A simplification of the construc-
tion of Statement 1 will do this: Add the coordinate
z → −z.

Statement 5.

Any mapping that can be written as a formula
can be made the Poincaré map for some ODE for

5Poincaré in volume three, item 397, of his memoirs in reference to the level of complexity of the three-body problem. Poincaré
never used the term chaos which was coined by Jim Yorke at the University of Maryland.
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which an electronic circuit can be built. This re-
sult is a consequence of the above statements and
the n-phase gate construction in [Brown & Chua,
1993]. As a result, we now expand Statement 1
as follows:

Statement 6.

Any dissipative system that can be written as a for-
mula, regardless of whether it arises from an ODE,
can be converted to a nondissipative system that
does arise from an ODE without altering its level
of complexity.

7. Summary

In this tutorial we have illustrated that there are
degrees of chaos and that there are very interest-
ing maps which are not considered chaotic but are
more complex than much of what we call chaos. We
conclude that it is impossible to talk of chaos in a
meaningful way without also talking about the level
of complexity of the chaotic system. From a practi-
cal point of view, there are nonchaotic systems that
are just as useful in producing a high level of com-
plexity as are many chaotic systems. Their use in
spread-spectrum communications is a good practi-
cal example. Low-level encryption systems which
are also low cost are another example. However,
our philosophical wanderings have led us to suggest
that there is a theory of chaos and that this theory
in concerned with determining the ways in which
complex outputs can arise from the action of dy-
namical systems, and with quantifying this level of
complexity in a useful manner.

We have shown how nonlinearities can be
formed in a variety of ways. The significance of this
is that an application needing chaotic effects will be
optimal if the construction assures that the chaos
arises from the right processes. There are at least
four different nonlinear processes in two dimensions
that can be used to generate chaotic effects which
have very different properties.

We have also shown that the features of dissi-
pation, noninvertibility, and orientation-preserving
are completely independent of chaos and can be
added or subtracted from any application, as
desired.

This paper is the fourth in a series of papers
whose purpose is to clarify a wide range of is-
sues about chaos through the construction of exam-
ples and counterexamples, [Brown & Chua, 1996a,

1996b, 1997] are the other three. In [Brown &
Chua, 1996a] we presented 29 examples that an-
swered such questions as “Can chaotic dynamical
systems be solved in closed form in terms of ele-
mentary functions?”, “Does sensitive dependence
on initial conditions ever define chaos?”, “What
is the relationship between popular definitions of
chaos?”, and several other questions. In [Brown &
Chua, 1996b] we presented 26 examples that illus-
trated the spectrum of complexity that lies between
Bernoulli chaos and periodic dynamics. In [Brown
& Chua, 1997] we presented 6 examples to show
that even the existence of positive Lyapunov ex-
ponents is not equivalent to chaos, that the shift
paradigm is inadequate to account for all the fea-
tures of chaos, and that highly complex orbits can
be generated by chaotic dynamics without requiring
that the initial conditions have positive algorithmic
complexity. In this paper we presented 24 examples
that: illustrated how subtle levels of chaos can be
generated by combining a wide range of nonchaotic
systems with chaotic systems; illustrated parts of
the complexity spectrum that resemble chaos; and,
how subtle nonlinear effects in autonomous two-
dimensional systems can contribute to the forma-
tion of chaos. In total, we have constructed over 85
examples of dynamical systems in terms of elemen-
tary functions for which electronic circuits can be
made that illuminate various aspects of chaos and
the complexity spectrum and refute many popular
notions about chaos. What we can conclude is that
defining chaos is every bit as difficult as predict-
ing chaos. Our examples suggest we conclude this
paper with the following interesting line of thought.

Let us conceive of a n-dimensional space where
one coordinate is entropy, another coordinate is cor-
relation dimension, another coordinate is the Lya-
punov exponent, and another the autocorrelation at
some fixed time, and so on until we have exhausted
all measures of levels of complexity found in a dy-
namical system. For each dynamical system, let
us make all these measurements and plot its place
in this space. We ask the question: Do the chaotic
dynamical systems form a connected set, a compact
set, or perhaps do they form a fractal? In short, just
what is the nature of this set?
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