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The most commonly used mapping to illustrate the phenomenon of chaos is the map x →
2xmod(1). This map is known as the ‘unilateral shift’ because, in the binary number system
this map shifts all digits to the left by one decimal place, and truncates the integer. The second
most commonly used paradigm of chaos is the Smale horseshoe whose complexity is essentially
the bilateral shift obtained when we simply shift without truncation in some symbol system.
Neither of these paradigms fully explains chaos since shifts cannot generate complex orbits
from simple (rational) initial conditions. How chaos generates complexity from simplicity is an
essential part that needs explanation. Providing this explanation is the objective of this paper.

1. Introduction

In this paper we bring attention to an important
feature of chaos unexplained by the shift, the Smale
horseshoe, or related paradigms. In physical terms,
this feature is the ability of a dynamical system to
produce very complex outputs from simple initial
conditions and parameters. In mathematical terms
this feature is the ability of an algorithm to generate
an irrational number from rational initial conditions
and parameters. An example is the classical algo-
rithm which produces

√
2. We call such dynamical

systems demiurgic. The significance of this class is
that these algorithms give us direct insight into how
a chaotic dynamical system can generate complex-
ity from simplicity.

In Sec. 2 we cover some preliminary ideas
needed for our exposition. In Sec. 3, we present
examples that illustrate a property of dynamical
systems that we call demiurgic. In particular, dy-
namical systems may be divided into demiurgic and

nondemiurgic systems. The shifts are nondemiur-
gic systems, as we will see. We will also show that
commonly encountered chaotic dynamical systems
are often demiurgic and are thus unlike the shift in
that they can generate complexity from rational ini-
tial conditions. In Sec. 4, we show how unbounded
dynamical systems such as ẋ = x are connected
to chaos and demiurgic systems. Section 5 is a
summary.

2. The Shift, the Complexity
Spectrum, and Attracting
Fixed Points

2.1. The shift paradigm

Paradigms of chaos are intended to convey intu-
itively how very complex behavior can arise in
nature. In this regard, the most long-standing
mathematically rigorous paradigm for chaos is the
Smale horseshoe. The intent of this concept is to
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demonstrate how stretching and folding can lead to
the highest level of complexity known to exist in dy-
namics. Crucial to the argument is to show how the
complexity that results from stretching and folding
in a dynamical system can be realized in a map
called the bilateral shift. Smale’s theorem specifi-
cally shows that under broad conditions a mapping
can have the same dynamics as a bilateral shift on
some invariant subset of its domain. We are thus
led to infer that when this occurs, the dynamics of
the map of interest on this invariant set, often hav-
ing measure zero, extends in some unspecified way
to the entire domain or at least to a domain of posi-
tive measure, and thus there arises the phenomenon
of chaos.

Smale’s theorem has to a large degree shaped
our thoughts about chaos and, consequently, we
have come to consider the bilateral and unilateral
shift the two most universal examples of chaotic
dynamics.

2.1.1. The source of chaos as explained
by the shift paradigm

Due to the historical importance of Smale’s theorem
we review the connection of the bilateral and unilat-
eral shift to chaos. In this regard, one of the most
persuasive presentations of this theory was given by
Ford [Barnsley & Demko, 1986]. His argument, for
simplicity, uses the unilateral shift

x→ 2xmod(1) .

He argues that the source of chaos in the shift is
deduced from the observation that if the initial con-
dition x0 is a very complicated number, then this
level of ‘complexity’1 will be reflected in the orbit.
The argument depends on using the binary repre-
sentation of numbers. Thus if

x0 = (.1011000111001011010 . . .)

then, in binary

2x0 = (1.011000111001011010 . . .)

and applying the mod(1) function gives the number

2x0 mod(1) = (.011000111001011010 . . .)

Clearly, all orbits of this map are determined solely
by their initial conditions. If the initial condition
is an infinite ‘complicated’ series of digits, then the
orbit will be also. It is a very significant point that,
as a result, the orbit of a shift does not contain
any digit sequence not already present in the initial
condition. This line of thought reduces the expla-
nation of chaos to the question of “How ‘compli-
cated ’ can an initial condition be?” This problem
was addressed by Kolomogrov, Chaitin and others
and led to the development of an important and
interesting mathematical discipline, see [Brown &
Chua, 1996a]. There are only two details from that
discipline that are essential for our argument here:
(1) A binary number has the highest level of ‘com-
plexity’ when the only way it can be communicated
is to write the number down long-hand, i.e. there is
no finite algorithm that we can use to generate the
number on a computer; (2) From the point of view
of measure theory, most numbers are of this form.
What is important here is that the explanation for
the phenomena of chaos is that chaos results — in a
class of dynamical systems that have yet to be satis-
factorily specified — from the uncertainty inherent
in our inability to measure the initial conditions and
parameters in a physical system.

For the shift, if there is any measurement er-
ror in the initial conditions, this translates directly
into errors between the predicted and actual orbits.
Since an initial condition in binary can be gener-
ated, in theory, by a coin toss, heads=1, tails = 0,
then the orbit that results from this initial condi-
tion is essentially as random as a coin toss. Thus
the shift illustrates the properties of both a deter-
ministic and a random process, i.e. it is described
by a formula, yet an orbit of the shift can be as ran-
dom as a coin toss. The paradigm of deterministic-
randomness arising from the initial conditions is at
the heart of the shift, unilateral or bilateral, and is
the point in proving the existence of a horseshoe.

Clearly, the initial conditions can be a factor
in the appearance of chaos and this is explained
by the shift maps. But the other side of the coin is
that a chaotic dynamical system can start from very
simple initial conditions, rational numbers which
may be integers, and generate very complex, un-
predictable orbits. This can not be explained by
the shift.

1A complete explanation with references of what is rigorously meant by the word complexity is found in [Brown & Chua,
1996a].
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The proof that a given system behaves like a
shift on some subset of its domain turns out to
be so difficult that alternative definitions of chaos
have evolved, see [Brown & Chua, 1996a]. The
emergence of the positive Lyapunov exponent as a
definition of chaos was one response to the mathe-
matical difficulties in proving the existence of horse-
shoes. This definition was based on the property of
the shift that caused the complexity of the initial
conditions to be reflected in the orbit. This prop-
erty originates from the number 2 in the mapping
x → 2xmod(1). In other words, the derivative of
the shift has an eigenvalue whose absolute value is
greater than 1. A map or a flow has a positive
Lyapunov exponent on an orbit when, on the aver-
age, the derivative has an eignevalue whose absolute
value is greater than 1. This popular definition is
not theoretically difficult to apply, but can be nu-
merically and computationally a nightmare to ver-
ify. But the thinking behind this definition is that
chaos arises from the initial conditions, and that
the positive Lyapunov exponent operated just like
the shift to make the complexity of the initial con-
ditions appear in the orbit. (In Example 5, we will
show that having a positive Lyapunov exponent is
not the same as being a shift in that it can some-
times produce a complex orbit from simple initial
conditions.) Other definitions have virtually can-
onized the idea of sensitive dependence on initial
conditions as being equivalent to chaos. It is con-
ceivable that sensitive dependence on initial condi-
tions might be the only universally accepted defi-
nition of chaos. However, the examples in [Brown
& Chua, 1996a] show that even simple nonchaotic
system can have this property.

In short, paradigms of chaos are focused on the
initial conditions as being the source of chaos rather
than the algorithm, or dynamical system. In this
section, we direct the focus from the initial condi-
tions back to the dynamical system.

2.1.2. Problems with the horseshoe/bilateral
shift paradigm

There are four fundamental problems that arise
with using this paradigm as an explanation of chaos.

(1) The type of initial conditions that are needed
for this paradigm to be used as a general expla-
nation of chaos can never be constructed, mea-
sured, or verified in any physical observation or
process.

(2) The dynamics of the shift can never generate a
complex orbit from a rational initial condition.

(3) The dynamics of the bilateral shift, or horse-
shoe, usually occur on a set of measure zero,
and thus may be physically insignificant.

(4) Maps which have a horseshoe are only topolog-
ically conjugate to the shift, not differentiablly
conjugate, and hence are not related to the shift
in a physically smooth way.

With regard to the first problem, one could ar-
gue via measure theory that the kind of initial con-
ditions that produce complex orbits in the shift are
the most common kind. That is, if we could put all
numbers on the interval [0,1] in a bag and reach in
and pull out one, it would be one of this type with
probability 1. However, because of (3) this is of no
importance.

Of all of these problems, (2) is the most trou-
bling because it is contrary to our observations of,
and our intuition about, the physical world. True
complexity does arise in the physical world from
simple beginnings. We can see it and measure it
and reproduce the experiments of others and get
their results. None of this can be explained by the
shift. The shift only tells us that deterministic dy-
namics exist that are virtually random. But it can-
not account for the generation of complexity from
simple beginnings that we see, and it is the gen-
eration of complex things from simple noncomplex
parts that is just as important a feature of chaos as
the unpredictable evolution of chaotic orbits.

We conclude that the dynamics of the shift,
while a partial explanation, cannot be a complete
explanation of the phenomenon of chaos.

2.2. Chaos and the spectrum of
complexity

In three recent papers we have presented over 50
examples, [Brown & Chua, 1996a, 1996b, 1998] to
show that it is very difficult to formulate a defi-
nition of chaos that is universal. Serendipitously,
these examples serve to illustrate that there exist
a very broad spectrum of complexity in the uni-
verse. Within this spectrum, we see systems that
range from constant, to periodic, to almost peri-
odic, and on to chaotic, and then further on be-
yond chaotic to what may be called gamma chaos
for its relation to gamma functions, see [Brown &
Chua, 1996a]. Still further on are possibly systems
that can be described by algorithms that are even
more complex than gamma chaos. At some point in
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this spectrum we arrive at a system that cannot be
described by any finite algorithm, so we call these
systems random for want of a better word. What
lies within this region of the spectrum of complexity
is unknown and is perhaps unknowable.

The existence of this spectrum suggests that to
understand chaos we must first answer the question
“How does chaos fit into the spectrum of complex-
ity?” or “What set of attributes uniquely distin-
guishes chaos from the other forms of complexity?”.
Secondly, of fundamental importance is the ques-
tion “Does chaos occupy a distinguished position in
the universe, in biological systems, or in some realm
of human endeavor?.” For example, is chaos the en-
gine of life? Is chaos the engine of the solar systems?

At present, as examples that have been pub-
lished or to appear have shown, we are not able
to answer these questions. In particular, no defini-
tion, i.e. fractal dimension, entropy, Lyapunov ex-
ponents, are able to pinpoint the exact location of
chaos within the spectrum of complexity and dis-
tinguish it from other forms of complexity that are
found there.

2.3. The complexity spectrum and
attracting fixed points

In this section we tie together systems that produce
some level of complexity with those which have only
attracting fixed points. This relates the complexity
spectrum to symbol sequences.

The unpredictability of the integer sequence of
the decimal portion of π is a level of complexity.
In general, systems having attracting fixed points
which are unpredictable irrational numbers deter-
mine a level of complexity.

Using the decimal as a marker for a starting
point, we may view an irrational number as a se-
quence of integers between 0 and 9, as is done typi-
cally in symbolic dynamics. The setting is the set of
all mappings fromM = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
into itself. With this set, a decimal number can be
expressed as a function f :M→M. Immediately
there is a problem with this setting. Since there
exist irrational numbers so complex that there is
no finite algorithm that can be used to write them
down, some functions in this set cannot actually be
written down, or constructed. This forces us to or-
ganize our thinking about these functions into two
classes. The functions that can be written down
will be called deterministic and those that can-
not will be called random. This imposes a natural

division of irrational numbers into deterministic and
random that closely parallels our ideas about ran-

dom sequences such as those generated by a coin
toss. Further divisions are possible: Periodic func-

tions correspond to rational numbers which are pe-
riodic. Rational numbers which are eventually con-

stant have two descriptions. They may be called

converging sequences or they can be called functions
which are eventually periodic. The division of al-

most periodic makes sense in this setting. After this
division we have an array of numbers, functions, or

sequences that are more complex than almost peri-
odic but are less than random. These functions are

characterized by increasing levels of complexity.

Within this setting, how do we construct the

function that represents the sequence of digits in the
square-root of 2? To illustrate the difficulties of this

construction we note that the function that corre-

sponds to the number .1234567891011121314 . . . is
fairly involved, see Example 6. If we can find any

algorithm to generate
√

2, then by a construction
like that of Example 6 we can generate the associ-

ated f . This fact frees us to restrict our attention
to algorithms such as Newton-Raphson, taking on

faith that we can fill in the missing function gap if

we are determined to do so.

Starting with an initial condition of 1, each it-

eration of Newton–Raphson produces a better ap-
proximation to

√
2. Each approximation defines a

function on M. At the end of Newton–Raphson,
which can never actually be reached, is

√
2.

Can we classify, within the complexity spec-
trum, the function defined by

√
2? For example,

suppose that we have a bounded dynamical system
defined on a space. Following symbolic dynamics,

we partition the space into 10 regions, labeled 0, 1,

2, 3, 4, 5, 6, 7, 8, 9. Now, we take an initial condi-
tion in region 1 and iterate the dynamical system,

i.e. generate the orbit. If the symbol sequence gen-
erated by this orbit is

√
2, is the system chaotic, or

is it some other category of complexity?

We may define the dynamical complexity of a

symbol sequence by the level of complexity of the
simplest dynamical system that can be used to gen-

erate the sequence. In this way we connect the type
of dynamical complexity to the complexity of sym-

bol sequences and through this we connect dynam-

ics to the construction of irrational numbers from
integers.
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3. Generating Complexity and Chaos

In this section we argue that while complexity in
the initial conditions of a system can give rise to
a level of orbit complexity, there is another mecha-
nism that is independent from this that gives rise to
a level of complexity regardless of the nature of the
initial conditions. In order to see what is missing
from the shift we take a close look at the various
features of the shift that account for its ability to
produce complex orbits.

The shift has two key properties:

(1) A mechanism to move lower level digits into
higher level positions of significance, i.e. mul-
tiplication by the integer 2.

(2) A mechanism of eliminating higher level digits,
i.e. the mod function that eliminates the integer
part of a number.

What we do not see in any shift is:

(3) A mechanism of adding digits onto the decimal
part of a rational initial condition.

Each of these three mechanisms is independent
of the other two. The first mechanism is illustrated
by the multiplication of an irrational number such
as π by n, n2, 2n, etc. For example, if the decimal
part of π, i.e. 0.14159 . . . , is taken as an initial con-
dition then multiplication by 10 gives 1.4159 . . . .
Discarding the integer portion we get 0.4159 . . . .
Doing this three more times moves the number
0.9 . . . into a position in which it could be signif-
icant for measurements purposes. That is, after
four iterations, 9 is now in the first decimal position,
whereas it started at the 5th decimal position. This
is what dynamical systems whose derivatives have
eigenvalues whose absolute value is greater than 1
do to the initial conditions. A system having a pos-
itive Lyapunov exponent may move a given decimal
position of an initial condition up and down in sig-
nificance, but on the average it moves it up.

The second mechanism is illustrated by periodic
functions of which f(x) = xmod(1) is an example.
Because of the periodicity, the significance of the
integer portion of a number diminishes after each
period. This is an entirely different dynamic from
(1).

While the maps that move a given decimal
position upward into significance for measurement

purposes are important to understanding chaos,
equally important is the class of maps which are
capable of adding on decimal digits to rational ini-
tial conditions, or which are capable of changing the
decimal portion of rational numbers to make them
irrational. Examples of the latter class are the algo-
rithms that generate

√
n, (n is prime), π, γ, (Eulers

constant), e, and other classical constants.
An interesting example is suggested by

DNA structures. Consider the human
gene for β-globin which symbolically starts
CCCTGTGGAGCCACA . . . and goes on for about
2000 more entries.2 The generation of this gene
can be conceived as taking place through the ac-
tion of a one-dimensional dynamical system having
an attracting fixed point which is a decimal frac-
tion whose first 2000 or so decimals values coin-
cide with a symbolic dynamic coding of the gene.
For example, symbolic dynamics suggests that we
set A =1, C=2, G =3, T=4 to get the number
0.222434331322121 . . . If we ask what dynamical
system could generate this number we are also
indirectly asking “What dynamical system could
produce this gene?”.

A dynamical system that could generate gene
codes in this manner might be called demiurgic.
The phenomenon of spontaneous polymerization of
the four basic nucleotides with the loss of water
is an example of what we mean by demiurgic, see
[Alberts et al., 1989, p. 5, Figs. 1–3]. Thus, for want
of a better word, we will say that a map is demiur-
gic if it has mechanism (3). Using this terminology
we can say that not all demiurgic maps are chaotic
as demonstrated by the square-root algorithm. Not
all chaotic maps are demiurgic as illustrated by the
shift. Not all demiurgic maps have attracting fixed
point. But some chaotic maps are demiurgic, per-
haps most, and perhaps this is the most important
class of chaotic maps.

We now proceed to a series of examples de-
signed to clarify the role of the demiurgic feature
of a map in producing complexity.

4. Examples

We use the square root algorithm as the basis of our
examples due to its broad familiarity, and its role
in the subject of fractals. Using Newton–Raphson

2A, C, G, and T are abbreviations for the four fundamental nucleotides that make up all DNA, see [Alberts et al., 1989].
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iteration to solve the equation x2 − a = 0 leads us
to the algorithm:

xn+1 = (x2
n + a)/(2xn) .

As a dynamical system this is

x→ (x2 + a)/(2x) .

For the special case of the initial condition being a
rational number p/q, with p, q integers, we get the
algorithm (

pn+1

qn+1

)
=

(
(p2
n + aq2n)

2pnqn

)
which defines a dynamical system on the two-
dimensional lattice of points having integer co-
ordinates. It is significant that this system is
unbounded on the integer lattice, even though the
ratio, p/q, converges to a fixed point.

Example 1. The Basic Example. In this example,
we take one coordinate to generate the square root
of a prime number. We use a second coordinate to
generate the sequence of integers, and use a third
coordinate to multiply these two and remove the
integer part. The algorithm looks like this:xy

z

→
 (x2 + a)/(2x)

y/(y + 1)

(xf(1/y))mod(1)

 .

The x-coordinate converges to
√
a and is the algo-

rithm that one obtains by a direct application of
the Newton–Raphson method to find the root of
the equation x2 − a = 0. The second coordinate is
derived as follows: If

un+1 = 1/(n+ 1) ,

then

un+1 = 1/((1/un) + 1) = un/(un + 1) .

In the third coordinate we use the relationship
1/un = n. Thus any function of 1/y is a func-
tion of n, so long as the initial condition for the
y-coordinate is 1. Hence if f(u) = u, then at the
nth iteration f(1/y) = n, and the product of x and
f(1/y) is nxn at this step. Note that xn is the
nth approximation to

√
a arising from iterating the

first coordinate. Evaluating this product mod(1)
discards the integer part and retains the fraction.
If f(u) = 21/u, the third coordinate is 2nxnmod(1).

This simple algorithm generates complexity by
producing the digits of an irrational number in the

first coordinate. In the third coordinate we use the
function f to move these digits into a more signifi-
cant position, i.e. the first decimal place. We then
make this decimal place significant by the use of
the mod(1) function, which is the same as using
the number as the argument in a periodic function.
By choosing f(n) = n we move the digits of the
square root up very slowly. By choosing f(n) = n2

we move them up very fast and the orbit becomes
very ‘random’ looking. In fact, orbits may be un-
correlated. By using the ‘binary-shift’, f(n) = 2n

in this case, to move the digits up we impart to
the orbit the level of complexity commonly seen in
chaos. A natural consequence of our construction
is that the dynamical system has an attractor in a
lower dimensional space. In this case the attractor
is in a one-dimensional space. This example does
not have a positive Lyapunov exponent or a horse-
shoe but is chosen as the prototype illustration of
our concept for its simplicity. In the following ex-
amples we will show how to add positive Lyapunov
exponents. But first we give a very important ex-
ample to show that having a horseshoe or a positive
Lyapunov exponent is not necessary to obtain the
level of complexity of the shift.

Example 2. A map with all orbits of a unilateral
shift without a positive Lyapunov exponent.

Let xy
z

→
 x

y/2

(z + x/y)mod(1)


with the following initial conditions: x0 = a/2,
a ∈ [0, 1], y0 = 1, z0 = a/2. The iterates of this
map can be obtained in closed form as a/2

1/2n

(2na)mod(1)

 .

Thus the z-coordinate has the same orbits as the
unilateral shift but the eigenvalues of the deriva-
tive of this map are 1, 1/2, 1. There is no posi-
tive Lyapunov exponent. We may give this map
a positive Lyapunov exponent with the following
modification:xy

z

→
 x

y/2

(αz + x/y)mod(1)


where α > 1. The eigenvalues are then 1, 1/2, α.



Chaos: Generating Complexity from Simplicity 2433

Example 3. Generating complexity from rational
initial conditions(

x

y

)
→
(

f(x)

(αy + x)mod(1)

)
where f is any function defining, iteratively, any
irrational number that can be defined by an algo-
rithm from a rational initial condition. This means
that the first coordinate converges to a fixed point,
which is, therefore, an attracting fixed point. If
α = 1, then the complexity of digits of the fixed
point are elevated into the first decimal by the mul-
tiplication by n. If α > 1, the map has a positive
Lyapunov exponent which is elevating the digits of
the fixed point more rapidly. The orbits are as com-
plex as the digits of any irrational number than can
be generated by an algorithm.

Example 4. A modified skew translation which gen-
erates complexity.

Let xy
z

→
 f(x)

(y + x)mod(1)

(z + y)mod(1)


In this example, the eigenvalues are f ′(x), 1, 1.
Since f defines an attracting fixed point, there are
no positive Lyapunov Exponents. The digits of the
fixed point are being elevated into significance in the
z-coordinate at the rate of n2. Note that, strictly
speaking, this is not a skew translation.

Example 5. Maps with Positive Lyapunov Expo-
nents can be Demiurgic.

As mentioned above, the map

x→ 2xmod(1)

cannot generate any complexity. However, the map

x→ 1.9xmod(1)

can create complexity. The reason is that

1.9 =
19

10

and thus multiplying by 1.9 is a shift to the left
by the multiplication by 19, followed by a shift to
the right by the division by 10. This situation is the
composition of two different shifts, i.e. the shifts are
in two unrelated bases.

As suggested at the start of this section, our ul-
timate interest is with mappings defined by rational
parameters and initial conditions. We examine the
above map more closely in this light. As noted it
can be written as:

x→ (19/10)xmod(1) .

It is a special case of

x→ (p/q)xmod(1)

where p, q are integers having no common divisors.
There is no general closed form solution for this
equation even though for q = 1 there is a closed
form solution. For q > 1, and p, q having no com-
mon divisors, this map produces an infinite orbit
for rational x0 so long as the numerator of x0 is
relatively prime to q.

The proof of this statement is as follows. First
we express the map restricted to rational initial con-
ditions as a two-dimensional mapping of integers.
Let x0 = r/s, where r, s are integers.(

xn+1

yn+1

)
=

(
qn+1s

(pyn)mod(qxn)

)

The ratio yn/xn forms the orbit of our original equa-
tion. By inspection, yn = pnr −Kq, K an integer
(note that yn cannot be expressed as = pnrmod(q)).
If the orbit is periodic then yn/xn = r/s for some
n, or pnr − Kq = rqn leading to the result that
pnr = Mq for some integer M . As q does not di-
vide either r or p, we have a contradiction.

Thus there are infinitely many rational initial
conditions, in fact a dense set, which generate infi-
nite orbits of rational points. This distinguishes the
map from the shift in a meaningful way.

This translates into the following. The map-
ping

x→ αxmod(1)

can generate complexity if |α| > 1, α is rational,
and α is not an integer. So in order to start with a
simple map and a rational initial condition, x0, and
generate complexity in a way that the shift cannot,
we choose α = |p/q| > 1 as a ratio of two inte-
gers which are relatively prime and require that the
numerator of x0 not divide q.

This example illustrates how having a positive
Lyapunov is not the same as being a shift. Further,
we see that what is important is not the Lyapunov
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exponent, but the actual eigenvalue of the deriva-
tive. If it is not an integer and is greater in abso-
lute value than 1, then the system has the ability
to generate infinite nonperiodic orbits even when we
are using only rational numbers as initial conditions
and parameters.

This example suggests that it is possible to view
the shift as a special case of a larger class of maps
which include demiurgic maps. Using symbolic dy-
namics we start with two sets of symbol sequences,
say binary and ternary sequences. We assume a
mapping exists between them that is 1−1 and onto.
For example, the unit interval has both a binary
and ternary representation and a natural mapping
between these two representations. We use Sn to
denote the set of bi-infinite sequences on n sym-
bols. Let f : S3 → S2 be the natural 1 − 1 onto
mapping between these two sets. Let si be the left
shift on Si. In this terminology, Example 5 corre-
sponds to the map s−1

2 ◦ f ◦ s3. The extensions of
this mathematical structure are numerous.

This example suggests a dynamical system on
the integers which can be solved in closed form
whose understanding may be at the heart of the
demiurgic class of maps.

Example 5a.(
xn

yn

)
=

(
qn

(pn)mod(qn)

)
where p > q are distinct primes. The bounded, in-
finite sequence of nonperiodic rationals is the ratio
yn/xn. This example points to the relationship be-
tween distinct prime numbers as having a key role
in the phenomenon of chaos.

Example 6. Normal Numbers. An irrational num-
ber is called normal if the digits of the number, and
all combinations of digits occur with the relative
frequency of a uniform distribution. For example,
the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 occur with fre-
quency 1/10, all pairs occur with frequency 1/100,
etc.

Normal numbers can be generated by algo-
rithms. The simplest normal number is obtained
by writing down the natural numbers in sequence:

N = .123456789101112131415161718192021222324 . . .

This number can be generated on a computer to any
desired level of accuracy. Using this algorithm as a
first coordinate in place of the square root algorithm

in Examples 1–4 produces a dynamical system that
creates a high level of complexity, continually. By
shifting these digits to the left, i.e. multiply by 10,
and remove the integer part, we may generate an or-
bit on a computer that illustrates the very highest
degree of chaos which arises from an algorithm, in-
dependently of the level of complexity of the initial
conditions, parameters, or the presence of horse-
shoes or positive Lyapunov exponents.

We now develop a dynamical system based on
N .

N =
∞∑
N=0

10(N+1)−1∑
k=10N

H(k, N)

where

H(k, N) =
k

10h(k,N)

and

h(k, N) = (N + 1)k − 9
N∑
i=0

i10N−i

and

i=N∑
i=0

i10N−i = N(10N+1 − 1)/9 − 10N

+ [(N − 1)10N − 10(10N−1 − 1)/9]/9 .

Since N = INT(log10(k)), where INT is the in-
teger part, we may consider N as a function of k
and write N(k) in place of N to get

g(k) =
k

10f(k)

where

f(k) = (N(k) + 1)k − 9

N(k)∑
i=0

i10N(k)−i

then,

N =
∞∑
k=1

g(k) .

Using this formula we can write down a dynamical
system that generates N :xy

z

→
x/(x+ 1)

g(1/x)

z + y


We must choose the initial conditions as (1, 1, 0).
N is generated in the last coordinate. By adding
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the following coordinate we obtain an orbit which
is as random as the sequence of integers in N :

w → 10(1/x)zmod(1)

In order to make this the Poincaré map of an
ODE we may use the procedure in [Brown & Chua,
1996a]. If we were to do this we would get an equa-
tion in 8 dimensions. Chaos can exist in any num-
ber of dimensions, but in this example, we had to
start with a much higher dimensional space to get
chaos to appear in a given dimension. In this case,
it has taken a 8-dimensional space to produce one
dimension of chaos in an ODE, and 4 dimensions
to produce chaos in one dimension for a Poincaré
map.

5. Connecting the Very Large
to the Very Small

Example 6 can be generalized. If we consider the
dynamical system defined by the map h(n) = n+1
and write down the orbit of hk(0) as 0, h(0), h2(0),
h3(0), . . . then remove the commas and add a dec-
imal to the left we get

N = .h0(0)h1(0)h2(0) . . .

In other words, N is formed from the orbit of a dy-
namical system in a routine manner. This construc-
tion is available for any dynamical system which has
an orbit of integers. Thus we can form the number
.1248163264128 . . . from the system x → 2x where
x0 = 1. Clearly, a large class of irrational num-
bers can be obtained from integer orbits of dynam-
ical systems. In particular, every dynamical system
having an integer orbit that goes to infinity defines
an irrational number in the interval [0, 1]. While
most (in the sense of measure theory) irrational
numbers are not constructable by this method, a
dense set of irrational numbers is constructable in
this manner.

By an entirely different method we may con-
struct an irrational number from a pair of un-
bounded integer sequences. In particular, if nk, mk,
nk < mk are two unbounded sequences of integers,
then nk/mk is a sequence of rational numbers in
the interval [0, 1]. Since any sequence can be real-
ized as the orbit of a dynamical system, the ratio
of two sequences is also realizable as the orbit of
a dynamical system. Reversing this idea we may
now view chaotic dynamical systems having ratio-
nal parameters and initial condition as unbounded

dynamical systems having integer initial conditions
and parameters. We illustrate this idea with the
logistic map.

Example 7. The Logistic Map. The map x →
4x(1 − x), for rational initial conditions, may be
written as two integer equations for pn, qn and then
the ratio, pn/qn can be used to obtain the orbit of
the logistic map having rational initial conditions.
The equations are

(
pn+1

qn+1

)
=

(
4pn(qn − pn)

q2n

)
.

In this way we are able to see that the logistic map
with rational initial conditions is equivalent to inte-
ger equations which become unbounded. Now the
question of periodic orbits for rational equations
is reduced to a question of divisors on integer se-
quences. This means that if the initial conditions
of the above equation are p0 = p, q0 = q where q, p
are distinct primes, and that the orbit is periodic,
then there are integers m, n for which pmqn = pnqm.

We know that qk = q2
k

by inspection. By induction
we derive a contradiction, concluding that this orbit
cannot, in fact, be periodic.

It is also possible to derive a similar result for
the Hénon map. The arguments proving the exis-
tence of nonperiodic rational orbits are more related
to number theory than to differential equations.

6. Summary

The shift-horseshoe paradigm explains the level of
complexity that the n-body problem can achieve
and it also explains one way that orbits can become
uncorrelated. It does not explain how something
complex can be generated from something simple.
On the other hand, we have constructed examples
to show that chaotic maps can generate complexity
from simple initial conditions. This leads to a di-
vision of chaotic maps into two classes, demiurgic
and nondemiurgic. The nondemiurgic chaotic maps
such as the shifts do not directly appear in physical
phenomenon, but are rather embedded on a set of
measure zero, usually. In this case, the shifts are
not necessarily physically significant and the infor-
mation they convey about chaos is very indirect.
In particular, the presence of shifts does not distin-
guish chaos from the rest of the class of complexity
generating dynamical systems. Of note is that the
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definition of chaos that uses a positive Lyapunov
exponent fares better as a paradigm for chaos when
the map is also demiurgic.

With regard to the demiurgic property, our ex-
amples serve to demonstrate that the relationship
between two unbounded sequences of integers is an
important issue for the study of chaos and, there-
fore, this number-theoretic line of inquiry is im-
portant for understanding how complex structures
evolve from simple structures.
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