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Michael Fisher once studied the solution of the equation f(f(x))=x2 − 2. We
offer solutions to the general equation f(f(x))=h(x) in the form f(x)=
g(ag−1(x)) where a is in general a complex number. This leads to solving dupli-
cation formulas for g(x). For the case h(x)=x2 − 2, the solution is readily
found, while the h(x)=x2+2 case is challenging. The solution to these types of
equations can be related to differential equations.
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1. BACKGROUND ON ITERATED EQUATIONS

At a physics conference, during a coffee break, one of us (MFS), heard of a
math problem that was supposed to test one’s intelligence. The faster you
could solve it, the smarter you were. It was remarked that Michael Fisher
had solved it within five minutes. The problem was

f(f(x))=x2 − 2 (1)

This can be solve by writing

f(x)=g(ag−1(x)) (2)

Substituting this form for f(x) one arrives at

f(f(x))=g(a2g−1(x))=x2 − 2 (3)



Setting a2=2 and letting h=g−1(x) we arrive at a double angle formula

g(2h)=x2 − 2=g(h)2 − 2 (4)

that is solved by inspection as

x=g(h)=2 cos(h) (5)

since g(2h)=2 cos(2h)=4 cos2(h) − 2. (Note that if f(x) solves a func-
tional equation, then for any complex valued constant c, f(c · x) also solves
this equation. As a result, both cos and cosh are solutions to the preceeding
equation.) The solution for f(x) can now be written as

f(x)=2 cos(`2 cos−1(x/2)) (6)

In a similar manner, one can readily solve

f(f(x))=2x2 − 1 (7)

as

f(x)=cos(`2 cos−1(x)) (8)

One of the authors, MFS, went home and remembered the problem as
f(f(x))=x2+2, and after much effort could not make any progress. MFS
passed the problem on to one of the other authors (ARB), who quickly
realized that this equation had, in general, a complex non-analytic solution
that has not yet been found in terms of known functions. ARB also quickly
solved the simpler form Eq. (2). The authors then began a systematic
study of multiple iterated equations that we report on here. As Michael
Fisher figured prominently into our start on this topic, we dedicate this
manuscript to him in honor of his 70th birthday.

As best as we can tell, it was Abel’s who first introduced the concept
of a functional equation. However, he gave no hint about why he was
studying or introducing functional equations. In his paper, (4) the first line
reads

‘‘La fonction f(x) étant donnée, trouver la fonction f(x) par
l’equation’’

f(x)+1=f(f(x)) (9)

which translates as ‘‘If the function f(x) is given, find the function f(x)
from the equation:’’

f(x)+1=f(f(x)) (10)
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Clearly, such equations look simple, but one quickly runs into questions of
uniqueness, families of solutions, and questions of differentiability. For
example f(x+n)=f(x) admits an infinite number of solutions which
includes all functions that are periodic in n. For another example, the
seemingly simple equation

f(ax)=bf(x)− (b − 1) cos(x) (11)

generates the nowhere differentiable Weierstrass function.
A particularly interesting point is the relation of iterated equations to

finite difference equations. If un=f(an) then in Eq. (10) we have un+1=
bun − (b − 1) cos(x).

As a first observation, all multiple iterated equations may be reduced
to iterated equations (the analog of duplication equations), by the above
method. Hence,we really need only treat iterated equations. While the
iterated equation above may be solved by inspection, it begs for a more
systematic treatment. A natural approach might be to reduce Eq. (4), to an
ordinary differential equation. We now demonstrate that this is possible in
this particular case.

Let

f(2x)=f(x)2 − 2 (12)

then

fŒ(2x)=f(x) fŒ(x) (13)

squaring both equations we get

f(2x)2=f(x)4 − 4f(x)2+4 (14)

and

fŒ(2x)2=f(x)2 fŒ(x)2 (15)

Subtract the value 4 from Eq. (14) and divide it into Eq. (15) to get

fŒ(2x)
f(2x)2 − 4

=
fŒ(x)2

f(x)2 − 4
(16)
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We conclude that both expression are constant and therefore

fŒ(x)2

f(x)2 − 4
=c (17)

and, using an initial condition to distinguish the cosine from the sine we
arrive at the result f(x)=2 cos(x).

However, we have cheated! There are two more problems to be cleared
up. (1) Can we conclude that

fŒ(x)2

f(x)2 − 4
=constant (18)

And, if so, does the value of the constant matter?
The answer to the first question is no. The form of Eq. (16) is g(ax)

=g(x), a log periodic equation having an infinite number of solutions. One
solution is cos(w log(x)) where w is chosen properly. Any periodic function
can be chosen in place of the cosine, and by adjusting w we obtain a solu-
tion. If the solution of g(ax)=g(x) is required to be analytic, then
g(x)=constant. Assuming this, we obtain the solution f(x)=2 cos(wx)
as mentioned above. Once an analytic solution is found, an infinity of solu-
tions can be obtained in the form f(x)=2 cos(a · x · cos(w log(x))), or more
generally, f(x)=2 cos(w × g(x)), where g(2x)=g(x). In essence, in iterated
equations, the log periodic functions behave as constants. Clearly, the
answer to the second question is that the constant does not matter.

This example highlights an important class of functions that play a
role in the solution of iterated equations, i.e., the log periodic functions.
Given a log periodic function f and an arbitrary function g, then g(f(x))
is another log periodic function of the same period. Hence, even very
simple iterated equations have infinitely many (non analytic) solutions.

A second class of important functions are those that satisfy the
iterated equation: f(az)=bf(z), b ] 1. A solution is f(z)=za, so that
aa=b. If we multiply this solution by any log periodic function of log
period a, we obtain another solution.

f(az)=bf(z) might be considered the second fundamental iterated
equation, log periodic functions being the first. It is both simple and linear.
Why this equation plays a fundamental role in the solution of iterated
equations is this: If we are given the solution, f, of f(2z)=f(z)2+2 then
the solution, g, of g(az)=g(z)2+2 is expressible as g(z)=f(za), where
aa=2. Thus, if we can find an analytic solution for some specific a, then
we can find non analytic solutions for other values of a. Hence, all solu-
tions (a conjecture) are expressible in terms of analytic functions and
solutions of the two fundamental iterated equations.
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2. ITERATED EQUATIONS AND DYNAMICAL SYSTEMS

The general first order, autonomous, replication equation is given by

f(ax)=G(f(x)) (19)

the solution of this equation leads to a solution of the general nonlinear,
autonomous, finite difference equation given by:

yk+1=G(yk) (20)

If we are able to find a locally invertible solution of Eq. (19) then Eq. (20)
is solved by

yk=f(akf−1(y0)) (21)

when f maps the complex plane into the domain of f−1. Particular solu-
tions then result from establishing the appropriate interval on which f−1(x)
exists.

But regardless of whether a solution can be found, Eq. (21) provides
direct insight into the mechanisms from which nonlinear equations arise, as
well as insight into the basic mechanism of chaos. Clearly the value of a
and the nature of the sequence of the powers of a tells us great deal about
the potential dynamics of the solution of Eq. (20). A strategy for solving
Eq. (20) now comes down to finding an a for which there is an analytic
solution, f, of Eq. (19). The particular function f and the value of a then
reveal the dynamics of Eq. (20).

3. ANALYTIC SOLUTIONS OF ITERATED EQUATIONS

The problem of solving Eq. (19) can be simplified by requiring that G
be analytic. This covers a wide range of interesting cases.

If f(a x)=G(f(x)) and we assume that there exist a nonconstant
analytic solution, we may likely (the general case is not solved as will be
demonstrated by an example) obtain the terms of the Taylor series by
direct computation. The process of obtaining the power series will require
that the value of a (since not every value of a corresponds to an analytic
solution) be fixed at some point and that f(0), fŒ(0) be fixed, also. Given
these values, the remaining derivatives at 0 follow from differentiating the
iterated equation. For example, when G is a polynomial, the possible values
for f(0) are obtained from the polynomial in f(0):

f(0)=G(f(0)) (22)
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If ln are the roots of this equation, then f(x)=ln are all solutions of the
replication equation. As we are seeking locally invertible solutions, these
solutions are discarded, hence some derivative must be nonzero and not
infinite at 0. Given f(0), we turn to the value of a and fŒ(0) using

fŒ(ax) a=GŒ(f(x)) fŒ(x) (23)

Setting x=0 we have

fŒ(0) a=GŒ(f(0)) fŒ(0) (24)

Possible solutions are a=GŒ(f(0)), and fŒ(0)=1, or fŒ(0)=0, thus
deferring the determination of a until later. The choice fŒ(0)=1 deter-
mines that the duplication constant a is GŒ(f(0)), which may be a complex
number depending on the roots of f(0)=G(f(0)). If a is given in advance
and a ] G(f(0)), then fŒ(0)=0. The second derivative equation is

fœ(ax) a2=Gœ(f(x)) fŒ(x)2+GŒ(f(x)) fœ(x)

For x=0 we have

fœ(0)(a2 − GŒ(f(0)))=Gœ(f(0)) fŒ(0) (25)

Clearly, this process can be continued to obtain all Taylor coefficients. At
each juncture, we have a choice of fixing a or fixing a derivative. Thus
there are numerous possible solutions depending on a. By fixing a in
advance, we may have only the roots of Eq. (22) as analytic solutions.

Once the formal Taylor series has been found, two problems remain.
Find the radius of convergence of the series and find the domain of a local
inverse of f. These theoretical questions are being investigated by one of
the authors for her dissertation (BAB) and, thus, will not be discussed in
detail here. The short answer is that there will generally be a positive radius
of convergence when a Taylor series can be obtained, which may be the
entire complex plane, and there will be a local inverse. We will illustrate
these facts with some examples.

4. EXAMPLES

Example 1. Let f(ax)=2f(x)2 − 1, then f(0)=1, −1/2. We choose
f(0)=1. Differentiating we get afŒ(ax)=2f(x) fŒ(x), and afŒ(0)=
4f(0) fŒ(0). Choose fŒ(0)=1, and then a=4. Continuing, we get the
power series for f:

f(x)=C
.

0
bk

xk

k!
, 1/bk=D

k

j=1
(2j − 1) (26)
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The first few terms of this series are

1+x+
x2

(2! · 1 · 3)
+

x3

3! · 1 · 3 · 5
· · · (27)

Clearly the series is uniformly convergent in the complex plane. If we
choose fŒ(0)=0 and fœ(0)=−1, then a=2 and we obtain the cosine
series. Noninvertible solutions are the constant functions f(x)=1 and
f(x)=−1/2, which also solve the associated nonlinear finite difference
equation.

Example 2. Find a function g such that g(g(x))=x2+b, where b is
a constant.

First solve the replication equation for f.

f(ax)=f(x)2+b (28)

We expect that a will depend on b. We first note that for generating
the derivative iterated equations, we need only consider b=0 as b enters
into the formulae through f(0). We write down the equations for five
derivatives:

fŒ(ax) a − 2f(x) fŒ(x)=0 (29)

fœ(ax) a2 − 2f(x) fœ(x)=2fŒ(x)2 (30)

f (3)(ax) a3 − 2f(x) f (3)(x)=6fŒ(x) fœ(x) (31)

f (4)(ax) a4 − 2f(x) f (4)(x)=8fŒ(x) f (3)(x)+6fœ(x)2 (32)

f (5)(ax) a5 − 2f(x) f (5)(x)=10fŒ(x) f (4)(x)+20fœ(x) f (3)(x) (33)

We note that

f (n)(ax) an − 2f(x) f (n)(x)= C
N

j=1
cj f (N − j)(x) f (j)(x) (34)

where N=n − 1. In Eq. (34), the coefficients cj can be obtained from a
polynomial PN, where

PN(x)= C
N

j=1
cj x j (35)
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which is obtained by iteration of the functional equation

S(h(x))=(x+1) h(x)+2 (36)

where h(x) is an ‘‘initial condition’’ which is a function of x. In particular,
choosing the initial function h(x)=2

PN(x)=SN − 2(2) (37)

It is not clear yet that the functional Eq. (36) for the coefficients represents
a simplification or an advantage in solving (28). Hopefully, the complexity
in the solution of (28) is restated in (36) in a form that can be attacked by
more sophisticated methods on infinite dimensional spaces.

For the special case b=0, f(x)=exp(x) and

g(x)=f(`2 f−1(x))=x `2

Example 3. Find the solution to the mapping

xk+1=l xk(1 − xk), 1 < l. (38)

We seek a locally invertible analytic function satisfying the duplication
equation

f(ax)=lf(x)(1 − f(x)) (39)

The polynomial equation for f(0) gives f(0)=0, 1 − 1/l, and we
exclude the initial condition f(0)=0, the constant solution.

fŒ(ax) a+(2lf(x) − l) fŒ(x)=0 (40)

we may choose fŒ(0)=1 and then 2lf(0) − l=−a. Likewise we have

fœ(0)=−
2 l

a2 − a
(41)

and

f (3)(0)=
3(2l)2

(a3 − a)(a2 − a)
(42)

5. GENERALIZATIONS

The equation

yk+1=G(yk) (43)
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is also solved by this method when G is not a polynomial but has
all derivatives.

More importantly, the method extends to any number of dimensions.
Let X ¥ Rn and G: Rn

Q Rn be C.. Then the solution of the duplication
equation

F(A X)=G(F(X)) (44)

where A is a Hermitian matrix provides the basis for solving the nth order
nonlinear, autonomous, finite difference equation

Xk+1=G(Xk) (45)

and the iterated equation

hk(X)=G(X) (46)

where hk is h composed with itself k times. The solutions are

Xk=F(AkF−1(X0)) (47)

and

h(X)=F(A1/kF−1(X)) (48)

respectively when F maps n-dimensional space into the domain of F−1.
Note that the radius of convergence and domain of the inverse are to be
determined. In many cases, the matrix A may be taken to be a diagonal
matrix D. Extensions to general linear spaces would require that the matrix
A be replaced by a bounded linear operator, L, on a Banach space.

Example 4. The Hénon map is given by

GRx
y
S=R1+y − cx2

dx
S (49)

Iteration of this equation leads to the finite difference equation

Rxk+1

yk+1

S=R1+yk − cx2
k

dxk

S (50)

We form the duplication equation with a diagonal matrix:

FRax
by
S=Rf(ax, by)

g(ax, by)
S=G(F(X)) (51)
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where

G(F(X))=R1+g(x, y) − cf(x, y)2

df(x, y)
S (52)

Extending the ideas of the first-order case we solve for f(0, 0), g(0, 0)
using the duplication equation. We proceed to solve for the Taylor coeffi-
cients for f, g by the same method as in the first-order case, using partial
derivatives instead of ordinary derivatives. Doing this we see that g(0, 0)=
df(0, 0) and cf(0, 0)2 − 2f(0, 0)+1=0. As in the first-order case, f(0, 0)
may have multiple solutions. Next, we differentiate f, g partially with
respect to x, y to get

fx(ax, by)=gx(x, y) − 2 cf(x, y) fx(x, y) (53)

leading to

afx(0, 0)=gx(0, 0) − 2 cf(0, 0) fx(0, 0) (54)

bfy(0, 0)=gy(0, 0) − 2 cf(0, 0) fy(0, 0) (55)

agx(0, 0)=df(0, 0) (56)

bgy(0, 0)=df(0, 0) (57)

continuing, we derive all necessary partial derivatives. In the event that A
must be chosen as a nondiagnonal matrix to assure the existence of a
locally invertible solution, the computation of derivatives becomes more
tedious, but poses no additional theoretical problems beyond the first-order
one-dimensional case.

Once this has been completed and we have obtained the map F, we
have the result

Hk(X0)=F(AkF−1(X0)) (58)

Where H(X) is the Hénon map. Dropping subscripts we get the factorization
of the Hénon map:

Hk(X)=F(AkF−1(X)) (59)

This equation states that H is conjugate (i.e., has the same dynamical
properties) to the map defined by A on the appropriate subspace of R2. The
differentiable conjugacy is given by F. If the matrix A is hyperbolic (has
one eigenvalue greater than one and one less than one), F maps two-
dimensional space onto a bounded subset, and F−1 exists over a sufficient
range, then we have proof that H is chaotic using only vector calculus.
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6. POST SCRIPT

Considerably more can be said about these equations and their con-
nection to the theory of finite difference equations, and nonlinear dynamics
generally. BAB is conducting research in this area. With regard to the
errant equation, g(g(x))=x2+2, the associated finite difference equation
is known to be conjugate to the exponential function for large x. Further
research is in progress. With regard to the Taylor series question noted
earlier, the equation f(ax)=f(x) exp(f(x)) is analytic, but whether f has
any analytic solution is not known.
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