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Abstract

In this letter, we present a general method for solving a wide range of nonlinear functional
and finite difference equations, as well as iterated equations such as the Hénon and Mandelbrot
equations. The method extends to differential equations using an Euler approximation to obtain
a finite difference equation.

1. BACKGROUND

The first-order, autonomous, nonlinear finite differ-
ence equation

yk+1 = 2 y2
k − 1, y0 ∈ [−1, 1] (1)

is solved by

yk = cos(2k arccos(y0)) . (2)

This is equivalent to the iterated, chaotic, dynami-
cal system equation defined by the mapa

T (x) = 2x2 − 1, x ∈ [−1, 1] .

The functional/duplication equation

f(2x) = 2 f(x)2 − 1, f(0) = 1, f ′(0) = 0 (3)

is solved by f(x) = cos(x). The iterated equation

g(g(x)) = 2x2 − 1 (4)

has as a solution

g(x) = cos(
√

2 arccos(x)), x ∈ [cos(π/
√

2), 1] .
(5)

All of these solutions have cos(x) in common, a
function which satisfies the duplication equation
[Eq. (3)]. Functions which satisfy duplication equa-
tions are the basis for the solution of these other

∗E-mail: raybrown@erols.com
aThis observation is indirectly suggested by a note from Ulam and Von Neumann.1
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three classes of problems, suggesting a general ap-
proach to their solution. In this letter, we set forth
this approach.

2. THE GENERAL CASE

We begin by writing down the four classes of
problems.

The general nonlinear, autonomous, finite differ-
ence equation and iterated dynamical system equa-
tion is given by:

yk+1 = G(yk) . (6)

The associated general functional equation is

f(ax) = G(f(x)) . (7)

The iterated equation is

g(g(g(. . . g(x)))) = G(x), k compositions . (8)

If we are able to find a locally invertible solution of
Eq. (7), then Eq. (6) is solved by

yk = f(akf−1(y0)) (9)

and Eq. (8) is solved by

g(x) = f(a1/kf−1(x)) (10)

when f maps the complex plane into the domain
of f−1. Particular solutions then result from es-
tablishing the appropriate interval on which f−1(x)
exists.

3. POWER SERIES SOLUTIONS OF
DUPLICATION EQUATIONS

The problem of solving Eq. (7) can be reduced to
the question: “How large of a problem does G
pose?” We make this problem tractable here by
requiring that G be a polynomial. This covers a
wide range of interesting cases.

If f(ax) = G(f(x)), and we assume that there
exists a non-constant analytic solution, we may
obtain the terms of the Taylor series by direct com-
putation. The process of obtaining the power se-
ries will require that the value of a be fixed at some
point, and that f(0), f ′(0) be fixed too. Given these
values, the remaining derivatives at 0 follow from

differentiating the duplication equation. For exam-
ple, the possible values for f(0) are obtained from
the polynomial in f(0):

f(0) = G(f(0)) . (11)

If λn are the roots of this equation, then f(x) = λn
are all solutions of the duplication equation. As we
are seeking locally invertible solutions, these solu-
tions are discarded, hence some derivative must be
non-zero at 0. Given f(0), we turn to the value of
a and f ′(0) using

f ′(ax) a = G′(f(x))f ′(x) .

Setting x = 0, we have

f ′(0) a = G′(f(0))f ′(0) .

Possible solutions are a = G′(f(0)), and f ′(0) = 1,
or f ′(0) = 0, thus deferring the determination of
a until later. The choice f ′(0) = 1 determines
that the duplication constant a is G′(f(0)), which
may be a complex number depending on the roots
of f(0) = G(f(0)). If a is given in advance and
a 6= G(f(0)), then f ′(0) = 0. The second derivative
equation is

f ′′(ax) a2 = G′′(f(x))f ′(x)2 +G′(f(x))f ′′(x) .

For x = 0, we have

f ′′(0)(a2 −G′(f(0))) = G′′(f(0))f ′(0) .

Clearly, this process can be continued to obtain all
Taylor coefficients. At each juncture, we have a
choice of fixing a or fixing a derivative. Thus, there
are numerous possible solutions depending on a. By
fixing a in advance, we may only have the roots of
Eq. (11) as solutions.

Once the formal Taylor series has been found, two
problems remain: To find the radius of convergence
of the series and the domain of a local inverse of
f . These theoretical questions will not be discussed
in detail here. The short answer is that there will
generally be a positive radius of convergence, which
may be the entire complex plane, and there will be
a local inverse. We will illustrate these facts with
some examples.

4. EXAMPLES

Example 1. Let f(ax) = 2 f(x)2 − 1, then
f(0) = 1,−1/2. We choose f(0) = 1. Dif-
ferentiating, we get a f ′(ax) = 2 f(x)f ′(x), and
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a f ′(0) = 4 f(0)f ′(0). Choose f ′(0) = 1, and then
a = 4. Continuing, we get the power series for f :

f(x) =
∞∑
0

bk
xk

k!
, 1/bk =

k∏
j=1

(2 j − 1) . (12)

The first few terms of this series are

1 + x+
x2

2! · 1 · 3 +
x3

3! · 1 · 3 · 5 · · · .

Clearly, the series is uniformly convergent in the
complex plane.

If we choose f ′(0) = 0 and f ′′(0) = −1, then a =
2, and we obtain the cosine series. Non-invertible
solutions are the constant functions f(x) = 1 and
f(x) = −1/2, which also solve the associated non-
linear finite difference equation.

Example 2. Find a function g such that g(g(x)) =
x2 + b, where b is a constant.

First solve the duplication equation for f :

f(ax) = f(x)2 + b .

We expect that a will depend on b. We first note
that for generating the derivative duplication equa-
tions, we need only consider b = 0 as b enters into
the formulae through f(0). We write down the
equations for five derivatives:

f ′(ax) a− 2 f(x)f ′(x) = 0

f ′′(ax) a2 − 2 f(x)f ′′(x) = 2 f ′(x)2

f (3)(ax) a3 − 2 f(x)f (3)(x) = 6 f ′(x)f ′′(x)

f (4)(ax) a4 − 2 f(x)f (4)(x)

= 8 f ′(x)f (3)(x) + 6 f ′′(x)2

f (5)(ax) a5 − 2 f(x)f (5)(x)

= 10 f ′(x)f (4)(x) + 20 f ′′(x)f (3)(x) .

We note that

f (n)(ax) an−2 f(x)f (n)(x)=
N∑
j=1

cj f
(N−j)(x)f (j)(x)

where N = n − 1. The coefficients cj can be ob-
tained from a polynomial PN , where

PN (x) =
N∑
j=1

cj x
j

which is obtained by iteration of the functional shift
mapping

S(h(x)) = (x+ 1)h(x) + 2

where h(x) is a function of x. In particular,

PN (x) = SN−2(2) .

For the special case b = 0, f(x) = exp(x) and

g(x) = f(
√

2f−1(x)) = x
√

2.

Example 3. Find the solution to the mapping

xk+1 = λxk(1− xk), 1 < λ .

We seek a locally invertible analytic function satis-
fying the duplication equation

f(ax) = λ f(x)(1− f(x)) .

The polynomial equation for f(0) gives f(0) =
0, 1 − 1/λ, and we exclude the initial condition
f(0) = 0, the constant solution.

f ′(ax) a+ (2λ f(x)− λ)f ′(x) = 0

we may choose f ′(0) = 1, then 2λf(0)− λ = −a.

f ′′(0) = − 2λ

a2 − a

and

f (3)(0) =
3(2λ)2

(a3 − a)(a2 − a)
.

5. GENERALIZATIONS

The equation
yk+1 = G(yk)

is also solved by this method when G is not a poly-
nomial but has all derivatives.

More importantly, the method extends to any
number of dimensions. Let X ∈ Rn and G : Rn →
Rn be a C∞. Then the solution of the duplication
equation

F (AX) = G(F (X)) (13)

where A is a matrix, provides the basis for solving
the nth order nonlinear, autonomous, finite differ-
ence equation

Xk+1 = G(Xk) (14)
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and the composition equation

hk(X) = G(X) (15)

where hk is h composed with itself k times. The
solutions are

Xk = F (AkF−1(X0))

and
h(X) = F (A1/kF−1(X))

respectively, when F maps n-dimensional space into
the domain of F−1. Note that the radius of conver-
gence and domain of the inverse are to be deter-
mined. In many cases, the matrix A may be taken
to be a diagonal matrix D. Extensions to general
linear spaces would require that the matrix A be re-
placed by a bounded linear operator L on a Banach
space.

Example 4. The Hénon map is given by

G

(
x

y

)
=

(
1 + y − c x2

dx

)
.

Iteration of this equation leads to the finite differ-
ence equation(

xk+1

yk+1

)
=

(
1 + yk − c x2

k

dxk

)
.

We form the duplication equation with a diagonal
matrix:

F

(
ax

b y

)
=

(
f(ax, b y)

g(ax, b y)

)
= G(F (X)) (16)

where

G(F (X)) =

(
1 + g(x, y) − c f(x, y)2

d f(x, y)

)
.

Extending the ideas of the first order case, we solve
for f(0, 0), g(0, 0) using the duplication equation.
We proceed to solve for the Taylor coefficients of
f, g by the same method as the first order case,
using partial derivatives instead of ordinary deriva-
tives. Doing this, we see that g(0, 0) = d f(0, 0),
and c f(0, 0)2 − 2 f(0, 0) + 1 = 0. As in the first or-
der case, f(0, 0) may have multiple solutions. Next,
we differentiate f, g partially with respect to x, y to
get

fx(ax, b y) = gx(x, y)− 2 c f(x, y)fx(x, y)

leading to

a fx(0, 0) = gx(0, 0) − 2 c f(0, 0)fx(0, 0)

b fy(0, 0) = gy(0, 0) − 2 c f(0, 0)fy(0, 0)

a gx(0, 0) = d f(0, 0)

b gy(0, 0) = d f(0, 0) .

Continuing, we derive all necessary partial deriva-
tives. In the event that A must be chosen as a
non-diagnonal matrix to assure the existence of a lo-
cally invertible solution, the computation of deriva-
tives becomes more tedious, but poses no additional
theoretical problems beyond the first order one-
dimensional case.

Once this has been completed and we have ob-
tained the map F , we have the result

Hk(X0) = F (AkF−1(X0))

where H(X) is the Hénon map. Dropping sub-
scripts, we get the factorization of the Hénon map:

Hk(X) = F (AkF−1(X)) .

This equation states that H is conjugate to the map
defined by A on the appropriate subspace of R2.
The differentiable conjugacy is given by F . If the
matrix A is hyperbolic, F maps two-dimensional
space onto a bounded subset, and F−1 exists over
a sufficient range, then we have proof that H is
chaotic using only vector calculus.

6. THE CONTINUOUS CASE

We discuss this case in two parts. The first part
will be the reduction of the continuous case to the
discrete case. The second part will treat the con-
tinuous case directly with minimal results.

6.1 Reduction to the Discrete Case

We illustrate the reduction to the discrete case with
the Rössler equation.

The Rössler equation is given by
ẋ

ẏ

ż

 =


−(y + z)

x+ αy

2 + z (x− 4)

 .
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We construct the Euler approximation as

T (X) = X + τG(X)

where X is (x, y, z), τ is a small step size, and
G(X) is given by the right-hand-side of the pre-
ceding ODE.

We now seek a mapping F of R3 with the
property

F (AX) = F (X) + τG(F (X)) ,

for some 3× 3 matrix of constants. For X = 0, we
have

F (0) = F (0) + τG(F (0))

so that G(F (0)) = 0. Thus, we must choose F (0)
as a fixed point of the mapping T . Differentiating,
we get the equation

DF (AX)A = DF (X) + τDG(F (X)) DF (X).

The choice A = I + τ DG(F (0)) requires that
DF (0) commute with DG(F (0)), the derivative of
the Rössler vector field at the chosen fixed point,
F (0). DF (0) may then be chosen to be invertible,
thus assuring an inverse to F near 0. Continuing
with higher derivatives we obtain a Taylor series
for F and conclude that

A =

 1− τ −τ
τ 1 + ατ 0

z1 0 1 + (x1 − 4)τ


and

DF (0) =

 c1 c2 c3

g1 g2 g3

h1 h2 h3


where the ci are arbitrary constants and the gi, hi
depend on the ci.

Collecting these results, we see that we may take
the step size τ , as small as we like to get a good
approximation to the continuous dynamics. Then,
the solution of the Rössler equation at the kth step
is given by

T k(X0) = F (AkF−1(X0))

if the appropriate series converges and inverse ex-
ists. For α > 0, A is hyperbolic. But, a complete
proof of chaos requires us to prove that the Taylor
series converges, that F−1 exists over a sufficiently
large region, and that F maps all of three space into

the domain of F−1. This will depend on the value
of α, and the values of the ci. These theoretical
matters are not investigated in this letter.

6.2 The Continuous Case

Consider the equation

x(x0, t) = cos(2t arccos(x0)) .

Formally differentiating, we have

ẋ = − sin(2t arccos(x0))2t ln(2) arccos(x0) .

For all t, x0, where the cosine is invertible, this re-
duces to

ẋ = − sin(arccos(x)) ln(2) arccos(x)

which is an autonomous first order equation. The
“solution” is chaotic but not unique. In general,
functions of the form

x(x0, t) = f(exp(At)f−1(x0)) (17)

where x is n-dimensional, and A is an n×n matrix,
define one-parameter groups, in that

x(x(x0, s), t) = x(x0, s+ t)

so long as f is invertible. Solutions of au-
tomonous differential equations always define such
one-parameter groups. Formally differentiating,
Eq. (17) gives rise to the autonomous ODE

ẋ = f ′(f−1(x))Af−1(x) .

If f is globally invertible, the solution is linear af-
ter a change of coordinates. The interesting cases
arise when f is locally, but not globally invert-
ible, and f maps all of n-dimensional space onto
a bounded subset of the domain of f−1. The var-
ious solutions of an ODE are then determined by
the separate functions that can be derived from
a duplication equation. In the case of the equa-
tion xk+1 = 2x2

k − 1, there are many “solutions,”
depending on the initial conditions, and this fact is
reflected in the different solutions to the associated
duplication equation.

7. CONCLUSIONS

We conclude from these results that all four prob-
lems are solvable in a broad array of cases in



282 R. Brown

any number of dimensions. In particular, we have
presented a method of solving the n-dimensional,
general first order, autonomous, nonlinear finite dif-
ference equation,

Xk+1 = G(Xk) .

First, the associated duplication equation is
formed. This equation will have multiple solutions.
Example 1 is representative of the types of solutions
that are possible. Select the solution F , such that
F maps all of n-dimensional space into the domain
of F−1. For Example 1, this is the cosine solution.
This F will then provide the solution as in Eqs. (9)
and (10).

Viewed in another light, the method presented
for solving iterated equations is equivalent to
assuming that the solution is C∞ and locally
analytically conjugate to an iterated matrix of com-
plex constants, and then solving for the conjugat-

ing map as a Taylor series. There are a wide array
of cases where this approach will be valuable, and
also much simpler than attempting to prove the ex-
istence of horseshoes. Of particular importance is
that the method relies computationally on nothing
more than vector calculus.
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