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Abstract. We show, using elementary methods, that for 0 < a the measure-preserving,
orientation-preserving Henon map, H, has a horseshoe. This improves on the result of
Devaney and Nitecki who have shown that a horseshoe exists in this map for a > 8.
For a > 0, we also prove the conjecture of Devaney that the first symmetric homoclinic
point is transversal.

To obtain our results, we show that for a branch, C", of the unstable manifold of
a hyperbolic fixed point of H, C crosses the line y = — x and that this crossing is a
homoclinic point, Xc. This has been shown by Devaney, but we obtain the crossing
using simpler methods. Next we show that if the crossing of W(p) and Ws(p) at Xc

is degenerate then the slope of C at this crossing is one. Following this we show that
if Xc is a degenerate homoclinic its JC-coordinate must be greater than l/(2a). We then
derive a contradiction from this by showing that the slope of C at H " 1 ^ ) must be
both positive and negative, thus we conclude that Xc is transversal.

Our approach uses a lemma that gives a recursive formula for the sign of curvature of
the unstable manifold. This lemma, referred to as 'the curvature lemma', is the key to
reducing the proof to elementary methods. A curvature lemma can be derived for a very
broad array of maps making the applicability of these methods very general. Further,
since curvature is the strongest differentiability feature needed in our proof, the methods
work for maps of the plane which are only C2.

1. Introduction
As a result of its simplicity, the Henon map [8]

where a, b are parameters, has been the source of numerous investigations, both numerical

and analytical. Among analytical studies is Benedicks and Carleson [1], who investigated

the structure of strange attractors in the non-measure-preserving case, b ^ ±1 . Devaney

and Nitecki [6] treated both the measure-preserving and the non-measure-preserving



1046 R. Brown

cases. A result found in their paper is that if fe = ± 1 , a > 8 then there is an embedded
horseshoe in H. Devaney [5] has conjectured that the first symmetric homoclinic point
of H is transversal. Ushiki [10] showed that analytic maps of the plane cannot have
homoclinic loops. Combining this result with those of Devaney and Churchill and Rod
[3] we can conclude there is some transverse homoclinic point for the Henon map.
However, this requires analyticity and does not prove Devaney's conjecture that the first
symmetric homoclinic point is transversal. Although we give a proof for the Henon map,
b = — 1, a > 0, that there is an embedded horseshoe, the method works for non-analytic
maps as well. Thus, it is routine to show for a > Jt/2 the twist-and-flip map has an
embedded horseshoe. By modifications of the H6non map to make it only C2, our proof
still carries through.

A key technical tool used in this proof is the reversibility property of H. Devaney was
the first to extend the notion of reversibility from flows to diffeomorphisms [4]. His aim
in doing so was to utilize these powerful features of Hamiltonian systems exploited by De
Volgelaere [7] in a more general setting. We retrace some of this development utilizing
more elementary methods to obtain the existence of symmetric homoclinic points. A
technical value of reversibility in our proof is that it allows us to confine our arguments
to C without considering the path of Cs. Without these symmetries, we must develop a
dual set of arguments to trace the paths of C and Cs until a transverse crossing is obtained.
For example, if we assume a > 1, it is possible to obtain transverse homoclinic points
without reversibility. The main significance of reversibility is that it allows us to obtain
transversality over the entire parameter range of a > 0. Also, it is clearly essential to
prove Devaney's conjecture.

In summary, our methods are distinct from the previous techniques used in that our
analysis is based on knowing the sign of the curvature of W(p) ; the proofs given
are relatively simple and computational and can be directly applied to other maps; we
obtain a result for the entire parameter range a > 0; and, the methods work for C2

diffeomorphisms.

Proposition 1 states that for a > 0, there is a branch of the unstable manifold of
a hyperbolic fixed point which crosses the symmetry line y = —x. This is proven in
Devaney [5]; however, our proof uses the curvature of the manifold to obtain this result
more directly. As a result of Proposition 1 we can conclude the existence of a symmetric
homoclinic point, Xc. Theorem 1 then states that the crossing of C at Xc is transverse.
A corollary to this is that there exists a horseshoe and that the first symmetric homoclinic
point is transversal, as conjectured by Devaney.

1.1. Short sketch of the proof. We denote the measure-preserving, orientation-
preserving Henon map as H. The key to our proof is that if we have an oriented curve
in the plane

zi(0
1(0 " W O

which has negative curvature and for which i\{t) > 0, then H transforms this curve to
one that also has negative curvature.

Using this idea, we show that a branch of the unstable manifold, C, of a hyperbolic
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fixed point can be parametrized so that z\(t) > 0 for small t. We show that C initially
has negative curvature and lies above the line y = —x, hereafter denoted as £. We then
follow C to the right until at some point, z(t\), we must have z\(t\) = 0. We show that
H(z(t\)) is below C. It is elementary to show that the stable and unstable manifolds are
symmetric about C by reflection. At this point we have established that for every value
of a > 0 there is a point Xc where C crosses C. By symmetry, a branch of the stable
manifold must also cross C and at Xc. Hence Xc is a homoclinic point. In Theorem 1
we show that Xc is a nondegenerate homoclinic point. Thus we have the corollary that
for a > 0 H always has a horseshoe.

1.2. Notation. H is measure-preserving and orientation-preserving and so

There are two fixed points for H. The equations for the fixed points are

ax2 + 2x — 1 = 0 y = —x

and the two fixed points are:

<7i

p is to the left of the vertical axis and q is to the right. In a later section it is shown that
p is a hyperbolic saddle.

W(p) and Wv(p) are the unstable and stable manifolds at p. Since p is a hyperbolic
saddle W ( p ) has two branches. C is the branch, which is shown to exist later, that
starts to the right of p.

For a matrix A, AT is the transpose of A.

1 \ ( 0
0

and (a, b) is the vector inner product of two vectors a, b.
We use the notation fix{<t>} for the fixed points of a map <!>.

2. Geometry of the Henon map
In this section we discuss the symmetries of H and the basic structure of W(p) . Refer
to Figure 1.
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2.1. Symmetries of H. Let

and let

• ( ; ) • (

—X

y

then

H = L o B

and

H = (LR) o (RB)

since R2 = I. Further,

(LR)2 = (RB)2 = I

so that H is the composition of two involutions. From this we have

H"1 = (RB) o (LR)

H is topologically conjugate to its inverse by each of these involutions since

RB o H = (RB) o (LR o RB) = (RB o LR) o (RB) = rT 'RB

and

H o (LR) = (LR o RB) o (LR) = (LR)H"1

Each of these involutions has a one-dimensional manifold of fixed points.

LEMMA 1.

= . 5 ( l - a y 2 )

Proof. Direct computation. •

Let fix{RB} = C and fix{LR} = V. Geometrically, the map RB is the perpendicular
reflection across C. The map LR is a horizontal reflection across V. The image of a
point (x, y) is the point (x1, y) with x ^ x' at the same distance from V.

LEMMA 2.

RB(p) = p = LR(p)

Proof. Direct computation. •
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V+ y = (l + vfTIS) /(2a)

FIGURE 1.

The two fixed points of H, p and q, are the points of intersection of the curves £ and

The unstable manifold W (p) of H at the point p is
V.

The stable manifold Ws (p) of H at the point p is

We have the following lemmas:

LEMMA 3.

W"(p) = LR(W*(P)) = RB(W*(p))

Proof. Since H(W(p)) = W(p) and H(Wf(p)) = Ws(p) we need only prove
W(p) = LR(Wf(p)). We prove only one side of this equation,

The second half is analogous. Let a e W(p) , then H~"(a) -*• p and so

LR(H-"(a)) - • LR(p) = p.
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By topological conjugacy and continuity

H"(LR(a)) - • p

so that LR(a) e Ws(p) or a e LR(Wv(p)). This gives W(p) c LR(Wf(p)). D

LEMMA 4. Let Cs = RB(C"), then C'is a branch of Ws(p).

Proof. Since RB(W"(p)) = Ws(p) we have RB(C") c Wx(p). Since p e Cu, p e RB(C").
Since the eigenvalues of DH(p) are positive each of the two branches of W(p) or Ws(p)
are mapped onto itself by H. Thus RB(C) is the subset of a branch of Ws(p). By
topological conjugacy it must be the entire branch. •

2.2. The basic structure of W"(p). Let DH be the derivative of H.

LEMMA 5.

and det(DH) = 1. The trace of this matrix is given by tr(DH) = —lax.

Proof. Direct computation. •

For measure-preserving maps of the plane, the type of fixed point is determined by
(tr/2)2 — 1, which is be called the discriminant, D . If D> 0, then the fixed point is
hyperbolic. If D< 0 the point is elliptic; if D=0 equal to 0 it is called parabolic by some
authors.

For p, D= 1 + a + 2\ / l +a so that p is hyperbolic for all a > 0. When a < 3, q is
elliptic (distinct complex conjugate eigenvalues on the unit circle). If a = 3, DH(q) has
eigenvalues —1,-1. For a > 3, q is hyperbolic and DH(q) has negative eigenvalues.

The slope of the unstable manifold at p is provided by the following lemma, see
Figure 1:

LEMMA 6. (1) The expanding eigenvalue atp is

Xu = 1 + Vl+a + V 1 + a + iVTTa > 2 + V3 > 1

(2) The slope, sh of W(p) is

S\ = — 1/A.H

(3) - 1 < 5, < 0.
(4) The contracting eigenvalue is

(5) The slope of Ws(p) is -l/ks = -Xu

(6) The slope ofV atp is \/{ap\)

Proof. Direct computations. •
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By (2) the slope of both W"(p) and IVs'(p) is negative at p.
Because of its significance in the proof of our results we state the following fact as a

separate lemma:

LEMMA 7. The slope of W"(p) atp is greater than the slope of £ and the slope ofV at

P-

Proof. The relation between £ and C follows from (1) and (2). The inequality of the
slope of V and C" follows from (6) and the fact that

Xu = -a px + y 1 + a + 2Vl +a.

D

This lemma says that as W (p) advances to the right in a neighborhood of p, it lies
above £ and V. A key point in our proof will be to show that W (p) must cross £
again before crossing V

From this lemma we know that there is a branch, C", of W(p) that starts to the right
of p.

Let

be a parameterization of of C such that z(0)=p, z(t) ^ 0 and i\(t) > 0 > ii(t) for t in
some interval [0, <5), S > 0.

From this point onward z{t) always refers this parameterization of C".

LEMMA 8. Let H(£) = H£. C" cannot intersect He before it intersects £.

Proof. Assume C intersects H£ at a point r j= p and has not intersected C and let
r = H(s). Then s precedes r, s < r, and H~'(r) = H^'CH^)) = s e £ which gives a
contradiction.

•

LEMMA 9. Let V+ be the positive vertical axis. He is a parabola which opens to the
left, passes through p, crosses V+ at y — (1 + V4a + l)/(2a), crosses the horizontal
axis at x = 1, crosses £ again at q, crosses the negative vertical axis at y = —(—1 +
V4a + l)/(2a). Fromp to q, He lies above £.

Proof. Direct computation. O

LEMMA 10. Suppose i\{t) > Ofor all t. Then C cannot intersect He before it intersects

Proof. If C intersects He then it must have already crossed £ by Lemma 8. Since
Zi(t) > 0, C" cannot cross £ until after it has crossed V+. Thus the conclusion follows.

D
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3. Geometry ofC"
The curvature of an oriented plane curve, w(f), is

(B~'w,w) un(t)w2(t) - w2(t)w\(t)

Since the quantity ||w|| is always positive we may omit it from consideration and
obtain a formula for the sign of the curvature:

3.1. Sign of curvature. We have the following lemma relating the sign of the curvature
of a plane curve x(t) to the sign of the curvature of its image under H:

LEMMA 11. (Curvature Lemma.) Let

Then

hence,
sgn(/c(w(r)) = sgn((B-'w, w)) = sgn((B-'z, z) - 2azi(t)3)

Proof. Direct computation. •

The curvature lemma says that if the curvature for an oriented plane curve z(f) is
negative and i\(t) > 0 along this curve then the curvature for H(z(f)) is also negative.
If the curvature of an oriented plane curve z(/) is positive and i\(t) < 0 along this curve
then the curvature for H(z(f)) is also positive. Thus, the curvature lemma provides
sufficient conditions for H, when considered as a mapping on a set of plane curves, to
preserve the sign of curvature.

3.2. Curvature ofC at p. The curvature of C" at p is given in the following lemma:

LEMMA 12. (Initial curvature.)

Proof. By Lemma 11 we have

Dividing both sides by ||w||3, simplifying, and omitting /:

llzll3 ' 3

Evaluating this expression at t — 0 we have
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Now
_ 1 / l 3

and

Simplifying and solving for K(0) we obtain the formula for curvature. Since ku > 1 the
curvature is negative. •

3.3. Orientation along C". We say that one point z(t\) precedes another point z(f2)
on z (t) when the arc length to z (t\) is shorter than the arc length to z (f2) and we write
this as z(t\) -< z(f2). We say a point, z(^), is between two points z(?t) ĉ z(f2) when
z{t\) -< z(^) •< z(f2). We have the following facts about H and z(r).

LEMMA 13. (1) Given tx let t2 be such that

then ti > t\.
(2) //z(f,) -< z(f2) -< H(z(r»)) f/ien f/zere exist t\ such thatx(t2) = H(z(ri)) andt\ < t».

Proof. Both items follow from the fact that H has only one fixed point in C, H is 1-1,
onto, and H expands C" near p. •

4. Turning lemmas
In this section we present several lemmas that tell us when Cchanges direction.

LEMMA 14. Let

be any vector in R2 with a > 0 and {} < 0. Let

be any point in R2 with x > 0. Then the vector

has positive slope.
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Proof.

Since a > 0, x > 0, a > 0, and p < 0 the slope is positive. •

LEMMA 15. 7/iere ejcwte a /?omf on z(t) where Zi(t) = 0.

Proof. Assume z\(t) > 0 for all t. C is bounded below by H£until after it crosses
V+by Lemma 10. By Lemma 11 C" must continue to the right and downward as long
as i\{t) > 0. Hence either z(f) crosses V+ or it stops at a fixed point q. But to reach
q, z(f) must cross V+. Hence, in any case, C must cross V+. Further, C crosses V+

with negative slope so that we may apply Lemma 14 and continuity to obtain a point
with vertical slope. •

Let z(t\) be the first point where zi(t) = 0.

LEMMA 16. z20i) ^ 0, and iiih) < 0.

Proof. Suppose that Z2O]) = 0- Applying H"1 to z{t\) we obtain an earlier point where
i\{t) = 0. Hence, i\{t\) = 0 and ii{t\) ^ 0. Since ii{t) < 0 for t < tu and ii{t\) ^ 0,
by continuity we have 22(̂ 1) < 0. D

LEMMA 17. Letz(t2) = H(z(/0). Then z(/2) is the first point were z2(^) = 0.

Proof. Suppose there exists a time t\ < ty < ti where Z2(ty) = 0. We have
z(fi) < z(tf) < z(?2) = H(z(^i)). By Lemma ii, there exists a tn < t\ such that

H(z(f,)). Then

0 = Z2(h) = {DH(z(t,))i(tn), tz) = (i(tn), DHr(z((,))e2)

Thus f] was not the first occurrence where (i(t), e\) = 0. D

5. Symmetric homoclinic points
LEMMA 18. Letz(t), t e [0,1] be a C2 curve in R2. Assume
(1) z,(0) = 0 and z2(l) = 0
(2) Z 2(0 < 0 for 0 < t < 1

(3) Zi(r)Z2(0 - Z2(0zi(0 < Ofar all t.
(4) Then z\(t) < Ofor 0 < f < 1 andzi(l) < z\(0)

Proof. Let r(r) = Zi(t)/z2(t) for 0 < t < 1. Then r(0) = 0 by (1) and r(f) > 0 by (3).
Hence r(t) is strictly increasing and therefore must be positive. Since z2(0 < 0 by (2)
we have i\(t) < 0 for 0 < t < 1 and so zi(l) < zi(0). •

LEMMA 19. Let u (t) be the segment ofC that starts at z {t\) and ends at H(z (*i)) = z (t2),
then u(f) satisfies the hypothesis of Lemma 18.
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Proof. From our hypothesis about z(t\) we have ii\{t\) = 0 and «2(?2) = 0. Since this is
the first point where i\ = 0 we must have «2(f) < 0 for all points of u(t) by Lemmas 16
and 17. The third condition of Lemma 18 is the condition of negative curvature which
follows from Lemma 11. •

LEMMA 20. Letz(t2) = H(z(fi)), then z(t2) lies below £.

Proof. By Lemma 19 we know that we must have z\(t2) < Z\(t\). But 22(̂ 2) = ~Z\(t\)
so that z 1 (f2) < -22(^2). or equivalently, 22(̂ 2) < — Z\{h) and so z(f2) is below £. •

Figure 2 illustrates the following two results.

LEMMA 21. The curvature ofC is negative before crossing £.

Proof. The curvature of C is initially negative for small t by Lemma 12 and continuity.
The curvature of Cmust continue negative until z(f2) = H(z(f|)) (using the notation of
Lemma 20) by Lemmas 11 and 20. But at z(t2) C has crossed £. •

PROPOSITION 1. For any positive value of the parameter a, C crosses £.

Proof. From Lemma 6 we can conclude that C" is above £ for small t > 0. By Lemma 15
there exist a first point, z(t\), on C"where i\(t\) = 0 . By Lemma 20 H(z(f])) is below
£. Hence C" has crossed £. •

Let Xc = (xc, —xc) be the first point where C crosses £.

LEMMA 22. C and Cmust cross £ at the same point.

Proof. This follows from the symmetry relations for C and C. •

6. Crossings ofC with V+, H+ and £
Refer to Figure 2 for an illustration of the ideas of this section. Let £0 be the segment
of £ from p to the origin, (0,0), let C"+be the arc of C" which starts at p and ends at
the first crossing of C with V+, and let C" be the arc of C" which starts at p and ends
at the first crossing of Cwith H+, and let C"be the arc of C that starts at pand ends at
Xc. Let Cu

y+ n V+ = {(0, y+)} and C»+ n H+ - {(*+, 0)}.

LEMMA 23.

Proof. Direct computation. •

LEMMA 24. Let g = (0, I/a) and let £g be the line from p to g, then C"+ D £ g = {p} and
therefore H(£g) n C,"+= {p}

Proof. C" is bounded away from £ g by H^. D
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FIGURE 2.

LEMMA 25.

Proof.

H(g)

I/a < x+

_ ( 1 + I/a \

and C" must cross W+above H(g) by the previous lemma, and hence above h = (I/a, 0).

We conclude that I/a < x+. D

Let m(t) = Z2(t)/i\(t) = \/r{t) be the slope of C" at a point t. Note that z(tc) = Xc.

LEMMA 26. Let U.-X{z{tc)) = z(f_,). Then m(r_,) < 0.

Proof. (1) Assume that z(tc) -< z(t\) then the result follows by the definition of z(t\).
(2) Assume z(ti) -< z(tc) then since z{tc) •< z(t2) = E(z(t])) by Lemma 20 and so
K~l(z(tc)) -<z{t\) by Lemma 13 and so m(f_i) < 0. D

LEMMA 27. Let mc = m(tc), then for t\ <t <tcwe have m(t) > mc.

Proof. Lemma 21. D
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LEMMA 28. Let C\ be the curve defined by y = f(x) = mx + b and let C2 be the curve
defined by y = g(x) where g(0) > b and g'(x) > m, then C\ D C% = 0.

Proof. If not, there is an x\ such that g(x\) = m x\ + b. from this we conclude that

^ . . , „ „ g ( * i ) ~ * g(0) - b g(0) - ftm < = = m < m
X\ X\ X\ X\

a contradiction. •

LEMMA 29. Let C* the segment of the line y = mc(x - (I/a)) from h to £. Then
Cu

c n £* = 0.

/'roo/ Rotate the plane 90 degrees and apply preceding lemma. •

Let k = (kc, —kc) be the point of intersection of £ and £*. The dependence of k on
mc will not be indicated in the notation.

7. Degenerate homoclinic points
A degenerate homoclinic point is a point where W(p ) crosses Ws(p) topologically but
not transversely. We will assume in the following three lemmas that Xc is a degenerate
homoclinic point.

LEMMA 30. m(tc) = 1

Proof. Let

then

RB

is the slope of C'at Xc. These two vectors point in the opposite direction therefore

RB

when Xc is degenerate and hence a = ^. D

LEMMA 31.

DH-\z(tc))(
 a

\ a

Proof. Direct computation. •

LEMMA 32. xc > \/2a and so 2axc - 1 > 0.

Proof. If Xc is degenerate then m(tc) = mc = 1, I /a < x+, and z(t\) •< Xc. By Lemma
29 kc < xc. By a direct computation kc = \/2a. •
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8. Embedded horseshoes in H
THEOREM 1. H has a transverse homoclinic point.

Proof. Xc is a homoclinic point. Suppose that it is not transverse. By Lemma 30
m{tc) = 1 so that

for some a. By Lemma 31 DH~' (Xc)(z(tc)) = ( ). Hence by Lemma 32

m(t-\) > 0. But H " 1 ^ ) -< z(t\) and must have negative slope by Lemma 26, a
contradiction. We conclude that the crossing of C and Cat Xc is transverse. •

COROLLARY.H has an embedded horseshoe.

Proof. Smale [6]. •

9. Twist-and-flip map
The twist-and-flip map, Brown [2], is

x \ = -( ( * ~ a ) c o s ( r ) ~ y s i n ( r ) + a

y ) \ {x - a ) s in ( r ) + vcos(r)

where a > 0. The technique used for the Henon map can be carried over to the twist-
and-flip map greatly improving both the proofs and the results of that paper. We state
only two results.

LEMMA 33. (Twist-and-flip curvature.) Let

= FT(z(r))

and X = r = yf{x — a)1 + v2 then,
(1)

(B-'w, w) = (B-'z, z> + r {3|z|2 - r2 + (r r)2 - 3r(B"'(z - a), z)}

(2)

3|z | 2-r2 + ( r r ) 2 -3 r (B- ' ( z -a ) , z ) > 0

Proof. The proof is a direct computation. D

THEOREM. If a > n/2, FT has a horseshoe.
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