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Abstract

In [1] Infinitesimal Stretching and Folding (ISF) is explained and it is shown that ISF diffeomorphisms

(ISFD) can duplicate the complex dynamics of ODEs with far greater computational efficiency than is

possible using standard numerical methods. In this paper I examine the dynamics of a very simple ISFD,

the Simple Scroll. Three areas will be examined: (1) trajectories; (2) Fixed points; and, (3) Poincaré

maps.
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1 Introduction

In [1] it is shown that ISF diffeomorphisms (ISFD) can duplicate the complex dy-

namics of ODEs with far greater computational efficiency than using conventional

numerical methods to solve ODEs. In this paper, I introduce the simple scroll ISFD

and examine its range of dynamics: trajectories, fixed points and Poincaré maps.

The value of ISFDs is that they are diffeomorphisms that have properties like flows

while being discrete mappings of a manifold. Instead of only producing discrete

values such as is common for diffeomorphisms such as the Twist-and-flip, Hénon,

Chirikov, etc, the iterates of an ISFD look like trajectories of ODEs while having

the form of a diffeomorphism.

2 Derivation of the Simple Scroll ISFD

The Chua double scroll will be the starting point to derive a very simple ISFD with

scroll dynamics. The dimensionless form of Chua’s equations are given by:

ẋ = α (y− x− f (x))
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ẏ = x− y− z (1)

ż = −β y

where,

f (x) =







bx+a−b for x ≥ 1.0
ax for |x| ≤ 1.0
bx−a +b for x ≤ 1.0

is a three segment piecewise linear function and α, β are dimensionless parameters.

In place of the classical Chua ODE, we will use a variant discussed in [2]. The

formulation for Figure 1 is as follows:

u = x+h · (17 · y−3 · (x−a · f (x)))

v = y+h · ((x−a · f (x))−3 · y+ z)

w = z−h ·β · y

where

f (x) = 2 · (exp(β · x)−1)/(exp(β · x)+1)

Figure 1
This figure is a modified version of the Chua Double Scroll from [2], β = 12.6, a = 2.5

Following [1] we replace f (x) by a constant and derive the following equation as a

starting point:

x = exp(α · t) · ((x0−a) · cos(ω · t)+(y0−b) · sin(ω · t))+a

y = exp(α · t) · ((y0−b) · cos(ω · t)− (x0−a) · sin(ω · t))+b

z = exp(β · t) · (z0− c)+ c

3 The Simple Scroll

Replace t by an infinitesimal step size h to get

x = exp(α · h) · ((x0−a) · cos(ω · h)+(y0 −b) · sin(ω · h))+a

y = exp(α · h) · ((y0−b) · cos(ω · h)− (x0 −a) · sin(ω · h))+b

z = exp(β · h) · (z0− c)+ c

To form a scroll, the center (a,b,c) must change with time as well as the dissipation

in z. Since the time variable has been removed, an analog of the time varying term

must be replaced by a function of the autonomous variables. It is known that using

the sgn function will shift the center coordinates (a,b,c) to (−a,−b,−c). But using

the sgn function will insert an undesirable discontinuity into the equation. However,



Infinitesimal Stretching and Folding II 3

since we are working in three dimensions this can be avoided by using the first two

terms of the Fourier expansion of the square wave function:

f (u) = sin(u)+ sin(3 · u)/3

Since dividing the second term by 3 does not contribute significantly to the discus-

sion we will simplify f as follows:

f (u) = sin(u)+ sin(3 · u)

f will be called the transition function; when inserted into the infinitesimal equation

we arrive at the ISFD:

xn+1 = exp(α · h) · ((xn−a · f (u)) · cos(ω · h)+(yn −b · f (u)) · sin(ω · h))+a · f (u)

yn+1 = exp(α · h) · ((yn−b · f (u)) · cos(ω · h)− (xn −a · f (u)) · sin(ω · h))+b · f (u)

zn+1 = exp(β · f (u) · h) · (zn− c)+ c

In the interest of further simplification I omit the parameters a,b and remove f from

the second equation to get the Simple Scroll equation:

xn+1 = exp(α · h) · ((xn− f (u)) · cos(ω · h)+ yn · sin(ω · h))+ f (u)

yn+1 = exp(α · h) · (yn · cos(ω · h)− (xn − f (u)) · sin(ω · h))

zn+1 = exp(β · f (u) · h) · (zn− c)+ c

The choice of u is still to be determined. Note that f affects the damping in the

z dimension in synchrony with change in the center of the x,y components of the

trajectory.

The choice of u is best confined to a simple three-dimensional plane. By some

trial-and-error we arrive at u = x + z. This completes the definition of the Simple

Scroll.

The final form of the Simple Scroll ISFD is as follows:

xn+1 = exp(α · h) · ((xn− f (un)) · cos(ω · h)+ yn · sin(ω · h))+ f (un)

yn+1 = exp(α · h) · (yn · cos(ω · h)− (xn− f (un)) · sin(ω · h))

zn+1 = exp(β · f (un) · h) · (zn− c)+ c

where,

u = x+ z

f (u) = sin(u)+ sin(3 · u)

f ′(u) = cos(u)+3 cos(3 · u)

fx = fz

fy = 0
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The Jacobian of this map is as follows:




a11 exp(α · h) sin(ω · h) a13

a21 exp(α · h)cos(ω · h) exp(α · h) fz

a31 0 a33



 (2)

where,

a11 = exp(α · h)((1− fx) · cos(ω · h))+ fx

a13 = exp(α · h)(− fz · cos(ω · h)+ fz

a21 = −exp(α · h)(1− fx) sin(ω · h)

a31 = exp(β · f (u) · h) ·β · h · fx · (z−1)

a33 = exp(β · f (u) · h) ·β · h · fx · (z−1)+ exp(β · f (u) · h)

]

4 Trajectories of the Simple Scroll

The following three figures illustrate the complex dynamics of the Simple Scroll

ISFD. Figure 2 presents three trajectories of the Simple Scroll ISFD with three dif-

ferent initial conditions. Parameter data is the same for all trajectories: c = 1, α =
−0.02, ω = 0.5, β = 0.007, h = 0.001

[Figure 2]
Three Trajectories of the Simple Scroll ISFD with initial conditions, from top to bottom,

(1.52,0,1), (−3,0,−π), (−3,0,−2π).

Figure 3 illustrates a trajectory that originates at the unstable fixed point at the origin

and terminates at a stable fixed point on the z−axis, (0,0,π/2).

[Figure 3]
Heteroclinic trajectory from the origin (0,0,0) to (0,0,π/2).

Figure 4 illustrates a periodic limit cycle containing three scrolls. c = 1, α =
−0.02, ω = 0.5, β = 0.007, h = 0.001 The transition function has been changed

to sin(u)− sin(3 · u) and u = x− z

[Figure 4]
A periodic limit cycle containing three scrolls

Figure 5 is a variation of the Simple Scroll obtained by inserting a twist factor as

used in the Twist-and-Flip map [3] in the rotational components.

xn = exp(α · h) · ((xn− f (un)) · cos(ω · r · h)+ yn · sin(ω · r · h))+ f (un)

yn = exp(α · h) · (yn · cos(ω · r · h)− (xn− f (un)) · sin(ω · r · h))

zn = exp(β · f (un) · h) · (zn− c)+ c



Infinitesimal Stretching and Folding II 5

The transition function is f (u), where, u1 = cos((x + z)− 2 · (x + z)2 + (x + z)3)
u = (sin(u1)+ sin(3 · u1)/3) · cos(u1)

2

Figure 5
The spiderweb scroll obtained by inserting a twist factor into the rotational components of the Simple

Scroll

α = −0.02, ω = 0.5, β = 0.007, r =
√

x2 + y2 + z3, h = 0.001

5 Fixed Points of the Simple Scroll

At a fixed point we have

xn = exp(α · h) · ((xn− f (un)) · cos(ω · h)+ yn · sin(ω · h))+ f (un)

yn = exp(α · h) · (yn · cos(ω · h)− (xn − f (un)) · sin(ω · h))

zn = exp(β · f (un) · h) · (zn− c)+ c

Using the z equation, assuming zn 6= c we conclude that f (u) = 0, or sin(u)+sin(3 ·
u) = 0. An obvious fixed point is x = y = z = 0. Also, we conclude that x = y = 0

and z = 2 · n ·π is a family of fixed points long the z−axis. Also, u = (2 · n−1)π/2

provides an additional family of fixed points. It is routine to check that all but a

select few of these fixed points are stable spirals. And the others are heteroclinic to

one of the stable spirals. There are additional periodic points present as well.

6 Duffing Dynamics from the Simple Scroll

The classical Duffing Equation is

ÿ+0.05ẏ+ y3 = 7.5 cos(t) (3)

The Duffing equation can be formulated as a three-dimensional autonomous system

by the following rearrangement:

ẋ = y (4)

ẏ = −0.05y− y3 +7.5 cos(z) (5)

ż = 1 (6)

The challenge is to replace ż = 1 with ż = f (x,y, z) to remove any trace of the con-

nection of Duffing Scroll to a time-varying forcing function. To produce a Duffing

Scroll trajectory the following modifications to the simple scroll are made:

a = 0.95, c = 1, α = −0.02, ω =
√

2/8, β = 0.005, γ =
√

3/2, h = 0.001

The transition function is chosen as

f (u) = 1.5 · cos(γ · u)− sin(u) g(u) = f (u−1)
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and the transition plane is u = x− z. The initial conditions are (0,0,2)

Note that this is no longer a ”simple scroll” in that the damping term in the z−coordinate

does not match the the center of rotation term in the rotational component.

xn+1 = exp(α · h) · ((xn−a · f (u)) · cos(ω · h)+ yn · sin(ω · h))+a · f (u)

yn+1 = exp(α · h) · (yn · cos(ω · h)− (xn −a · f (u)) · sin(ω · h))

zn+1 = exp(g(u) ·β · h) · (zn− c)+ c

The x-coordinate of the scroll is multiplied by 0.75 and the y-coordinate of the scroll

is multiplied by 1.5 to bring out the similarities in the two trajectories, see Figure 6.

[Figure 6]
Trajectory A is the scaled Scroll; B is the Duffing trajectory; and, C is the overlay of the two trajectories

7 Poincaré Maps

The ISF formulation suggests a natural surface to be used for examine a Poincaré

map or first-return map. In particular, for the Simple Scroll it is the function f (u).
Plotting the points where f (u) = 0 will produce an image of an attractor on that

surface.
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List of Figures

Figure 1: The Modified Chua Scroll
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Figure 2: Three Trajectories of the Simple Scroll with Three Different Initial Con-

ditions

Figure 3: Complex Heteroclinic trajectory from the origin (0,0,0) to (0,0,π/2).
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Figure 4: The Limit Cycle of the Triple Scroll

Figure 5: The Spiderweb Scroll
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Figure 6: The Duffing Scroll


