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Abstract. It is well known that chaotic systems have unpredictable time series, expo-

nentially sensitive dependence on initial conditions, a noisy spectrum, and various other

properties of pseudo-random processes. These properties have made it difficult to analyze

and understand chaotic systems using traditional approaches to the study of differential

equations. In this paper we present a new approach to chaos. This approach is suggested

by the most complex chaotic system known, the human EEG. We argue that chaotic sys-

tems, and complex systems generally, may be better approached by understanding their

morphology as is done by physicians when inspecting the human EEG. From a morpho-

logical point-of-view, the complex, pseudo-random properties of chaotic time series are

not an obstacle to understanding chaos or formulating applications of chaos. But to be

mathematically and scientifically rigorous, this view requires that we formalize the concept

of morphology and understand the source(s) of the morphology of chaotic systems. In this

paper, we offer a formal definition of morphology and examine the sources of morphology

for a class of ODE’s with chaotic solutions. To support the development of a morphological

approach, we turn to the concept of Dynamical Synthesis [6]. This is an approach that

requires us to reverse engineer complex dynamics as opposed to deriving equations from

the laws of science. Specifically, to achieve dynamical synthesis we must learn what are the

building blocks of complex systems by first examining and dissecting many mathematical

system that exhibit complex properties, and then derive the fundamental theorems that

guide the use of the building blocks to construct models and carry out predictions. To

initiate this program we first examine the source of complexity in chaotic systems and

then derive three methods to generate this complexity; the third method derives almost

periodic functions that have the properties of unstable manifolds.
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1 Introduction

The phenomena of chaos has been known since the work of Poincaré[13].
Without the aid of modern computers, Poincaré correctly analyzed the source
of this complexity, illustrated with time-one maps in Fig.1, see [12] for details
of how figures of unstable manifolds are derived.
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Figure 1: In this figure we see both stable and unstable manifolds, which
are symmetric for the twist-and-flip map. The trellis referred to by Poincaré
[13] is further designated by the white box and is enlarged in A. In B, the
unstable manifold in the vicinity of the fixed point is shown in more detail.

Its complexity, while clearly understood by Poincaré, was formally char-
acterized by Smale [14] in the Smale-Birkhoff theorem. What was revealed
by the Smale-Birkhoff theorem was that chaotic systems can behave like ran-
dom phenomena even though their time series arises from the solution of a
deterministic ODE. Since the early 80’s, it has been the topic of thousands
of articles and research projects, yet, wide-spread use of chaos in industry is
limited and somewhat focused on controlling chaos. Most applications center
on using some form of fractional dimension or correlation coefficient to mea-
sure the extent of the complexity of a given chaotic system. The reason for
the limited progress in applying chaos is characterized by the following ques-
tion: ”How do we construct useful applications of a class of systems which
are inherently unpredictable”? In this paper we present a new way to un-
derstand and approach chaos that may lead to the possibility for significant
applications. To have a guide to follow in this discussion of chaos, we turn
to the most complex chaotic system we know: the human brain. Within the
dynamics of the human brain we turn to the human EEG.

Following the model of how physicians use the EEG to identify neuro-
logical abnormalities, we suggest that it is possible that chaos can be un-
derstood morphologically. This approach is forced on the physician due to
the difficulty of understanding the EEG mathematically. In order to see how
to approach chaotic time series morphologically, we turn to chaotic systems
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with discrete forcing functions or transition functions (defined below) to pro-
vide a clue to the source of the morphology of chaotic systems. The simplest
starting point is nonlinear ODE’s with discrete forcing. From a morphologi-
cal point-of-view, it is unimportant that the future of a chaotic time series is
uncorrelated to its past, or that two time series from very close initial con-
ditions become uncorrelated. It is only important to know ’approximately’
what family of curves the chaotic system uses to produce the morphology
of the time series and to understand the conditions under which it moves
through this family of curves.

2 The EEG Model of Chaos

As noted in the introduction, what has led to our focus on morphology is
an examination of the human EEG. A single observation about the human
sleep EEG provides the clue we are seeking: While every human brain is
different and the ’mesoscopic’ mechanisms that produce electrical activity in
the brain may vary to some degree as well (since the each human brain is not
a cookie cutter copy of some reference brain) the morphological presentation
of normal brain EEG’s is still very similar in the eyes of neurologists. Thus,
the chaotic mechanisms in all normal human brains must be similar to one
another but need not, and cannot, be exactly the same as would be the case
if brains were made from a reference, or standard, brain.

How this can happen is illustrated by the Chua circuit analysis found in
[1]. As shown there, and in Figure 2, one can mathematically construct an
infinity of double scrolls without reference to the Chua circuit. They will
all be different from the Chua double scroll but similar enough to produce
similar morphologies and ’statistically’ similar dynamics. In the same paper
we show how to construct Lorenz analogs and Rössler analogs in abundance,
all being statistically and morphologically similar to the Lorenz and Rössler
systems, but not exact replications. Further, if we look at the time series for
the Chua, Lorenz or Rössler equations, and compare them to mathematically
constructed analogs following the methods in [1] they will all have different
time series from their more famous progeny, but the morphological charac-
teristics will be the very similar, just as we see in the human EEG. Thus, it
is the morphology of the time series that is the relevant invariant rather than
its specific time series values. For every initial condition, the morphology of
the Chua circuit is ’nearly’ the same, as is true of Lorenz and Rössler. Like-
wise, if we follow the construction found in Brown [1] the morphology of a
mathematically constructed, rather than a derived, equation, whether it be of
the Chua type, Lorenz type, or the Rössler type, the morphology will follow
that of the Chua, Lorenz, and Rössler respectively. By delay plots and other
devices, it is possible to identify these systems from samples of their time
series, just as physicians do with the human EEG, and then reverse engineer
the system from the synthesis, if we have developed a sufficient theoretical
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Figure 2: In this figure we present morphologically equivalent Lorenz and
Chua attractors from [1].

foundation for a morphological approach.
As an aside, one might ask ”why does chaos behave like this?” The answer

is that in order for many copies of the same species to evolve it must be
possible for a set of approximate operations to be applied to an average
set of components in a manner that assures that an average result will be
obtained over a sufficiently short time frame. The statistical features of
chaos are perfect to carry out this task. Due to the nature of Nature, it is
advantageous that the operations not be required to be applied in a ridged
order, which would make them unadaptable to changes in the environment.
A specific chaotic process may apply its operations in a varying order and
still obtain the same average result regardless of the initial conditions. So the
fact that chaotic systems produce random looking time series for a specific
species or brain wave, etc., the morphological results are still similar for each
species or process and this is all that is necessary.

We now turn to the problem of understanding the source(s) of the mor-
phology of chaos. We begin with a look at the source of morphology from
chaotic equations with discrete forcing or discrete transitions since they pro-
vide the easiest method of obtaining insights.

3 The Morphology of Chaos

Both discrete transitions and discrete forcing have been investigated in a
series of papers by Brown [1] and Brown and Chua [3-11] Chua, Brown,
and Hamilton [12], Brown, Berezdivin and Chua [3] and its relationship to
iterated equations and functions, Brown [2], Brown, Brown, and Schlesinger
[4]. We draw on those results in the following discussion.

Discrete forcing is illustrated by the equation

Ẋ = F(X) + f(t) (1)

where it is understood that the variable X is a vector and the forcing function
f(t) is discrete, such as f(t) = sgn(cos(t)) As an example, we can form the
discretely forced Ueda equation

ẍ + 0.05ẋ + x3 = 7.5 · sgn(cos(t))
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By dropping the damping term we get

ẍ + x3 = 7.5sgn(cos(t))

Splitting this equation into two we get

ẍ + x3 = 7.5 (2)
ẍ + x3 = −7.5 (3)

While we have removed the damping term and thus an attractor is no longer
present, chaos is still present as demonstrated in the above referenced articles.
In particular, the chaos in the discretely forced Ueda equation can now be
seen as the composition of the actions of two autonomous components applied
successively according to the cadence supplied by the cosine function. With
this understanding, we can now introduce simplifications that enable us to
construct an equation with all of the chaotic properties of the Ueda equation,
but for which the time one map can be explicitly found. The simplest example
is the twist-and-flip equation originally published in Brown’s dissertation in
1990:

(
ẋ
ẏ

)
= f(r)

(
0 1
−1 0

)(
x− a · sgn(sin(ωt))

y

)
(4)

where f is an arbitrary function and r =
√

(x− a · sgn(sin(ωt))2 + y2.
While this equation may seem strange, it does reveal how discrete equa-

tions operate. In particular, it reveals how a chaotic equation cycles through
a set of arcs in an almost random fashion to produce a time series. A cadence
is set by the frequency of the forcing function and on this cadence, a different
arc of a periodic function is selected and used in the time series. What is
also revealed is that the morphology is determined by the underlying set of
integral curves of the associated autonomous equations. For example, if the
sgn of sine is positive then we have the autonomous equation:

(
ẋ
ẏ

)
= f(r)

(
0 1
−1 0

)(
x− a

y

)
(5)

where f is still the same and Eq.4, an arbitrary function, and
r =

√
(x− a)2 + y2.

The solution of the autonomous equation is straight forward since the
function f is constant on integral curves.
(

x(t)
y(t)

)
= exp(f(r0) · B · t)

(
x0 − a

y0

)
and r0 =

√
(x0 − a)2 + y2

0 (6)
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and the matrix B is (
0 1
−1 0

)

This equation is called a twist because it twists a straight line into a spiral.
With some algebra, we can show that the time-one map of the forced equa-
tion is the square of a composition of the above twist followed by a reflection
that sends the point (x, y) to the point (−x,−y), also called a ’flip’. Hence, in
this case of symmetry, one can generate a random selection of arcs from the
twist equation combined with the flip without squaring the composition of
the twist and flip. Note that, in the discrete case, it is trivial to string these
arcs together in a smoothe manner with a slight adjustment to the discrete
forcing function to make it C∞ and still retain its essential dynamical prop-
erties. In the case of continuous forcing, chaos can be modeled by selecting
an infintessimal segment from a family of curves. To see this consider the
following argument: Given

d2x

dt2
= F (

dx

dt
, f(x)) + g(t)

we form the approximation

d2x

dt2
= F (

dx

dt
, f(x)) + ai, t ∈ [ti, ti+1]

or in vector form,
dX

dt
= F (X) + g(t)

From this we form the family of vector equations by using a discrete approx-
imation of the forcing function.

dX

dt
= F (X) + ai, t ∈ [ti, ti+1]

where,

ai = g(
ti + ti+1

2
)

clearly, from the above decomposition, we can see that from the discrete equa-
tion we obtain a selection of arcs from a family of curves from autonomous
ODE’s. As this approximation is made more accurate, the solution converges
to a selection of points from a set of continuously changing curves. We note
that just as in the case of the twist equation above, the discrete approximate
solution is obtained by forming the composition of the solutions of a family
of autonomous equations.

A second case is illustrated by the Chua equation. By carrying out an
analysis as done in [1] we reveal the inner workings of this equation. What is
shown is that the dynamics can be reduced to something similar to the twist
with one modification. The cadence that drives the selection of arcs from
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the family of autonomous equations is replaced by a transition surface that
serves the same function.




ẋ(t)

ẏ(t)

ż(t)




=




α(b + 1) α 0.0

1.0 −1.0 1.0

0.0 −β 0.0







x− k sgn(x)

y

z + k sgn(x)




The transition surface is the y, z plane.
In these examples we see that chaotic systems with some form of discrete

forcing or transitions can be decomposed into simple linear and nonlinear
parts. While chaotic dynamical systems come in many forms as seen in the
above references, these examples show that there are at least two distinct
classifications possible that provide extensive insight into how chaos works:
Those systems which alternate between components through the use of a
transition surface such as Chua’s double scroll, and those which transition
on a cadence such as the Ueda equation and twist-and-flip equations. The
meaning of the nonlinear components and how they account for the mor-
phology of a chaotic dynamical systems can be seen by taking a closer look
at some decompositions. But before that, a further observation is in order.
Most chaotic systems contain both chaotic dynamics and non chaotic dy-
namics. The well known KAM island chains are an example. The fact that
chaotic systems represent healthy heart and brain signals raises the question
of whether, under some circumstances, the almost periodic components seen
in the KAM island chains can also occur in those signals, and if so, what do
they mean? How this might occur is suggested by the Ueda equation. If the
damping were to change, then the attractor might settle into an almost pe-
riodic orbit. It would be important to understand what physiological forces
were at work if this were to happen and what would be the meaning for the
patient.

4 Decompositions of Chaotic Systems

From the analysis above, we can gain a great deal of insight by looking at
some examples. If

Ẋ = F(X) + g(t)

we need to first look at the equation

Ẋ = F(X) + a

where a is a constant. This equation may have damping (or not), and non
zero divergence (or not). These conditions will have a significance to the
possibilities for time series solutions that depend on the initial condition. A
particularly interesting example is illustrated by Figure 4:
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Figure 3: In this figure we see chaotic solutions (light blue and yellow) wrap-
ping around KAM island chains. Because of the nonzero divergence there
are three period-three points (red) that are attractors.

Figure 4: In this figure we show how segments of the Chua-Lorenz type
attractor can be recognized and partitioned to facilitate reverse engineering.

In Figure 4 we present a segment of the time series of the y-component of
a Chua-Lorenz-type attractor from Brown[1]. We have partitioned the time
series into segments that correspond to the components of the attractor.
From this partition, we may select the segments corresponding to one of
the two components of the attractor and construct an approximation to this
component.

After reconstructing each component, we may collect the transition points
from the ends of the segment and form an approximate transition surface and
then reconstruct the entire attractor in a morphological sense. While this is
an ”approximation” that will not produce the same time series components in
the same order, the reconstruction is sufficient to understand the underlying
dynamics. Depending on the application, these underlying component dy-
namics can be associated to physical or physiological processes. In the case
where we are searching for pathologies in a medical application or human
EEG or EKG, it is not necessary to reconstruct the entire attractor, but only
the components. Understanding pathologies in the time series would thus be
reduced to understanding pathologies in the components of the time series.
Where these components have been associated to physiological processes, a
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remedy strategy may be formulated that may more directly lead to recovery
or rehabilitation.

While the composition equation is not an approximation of the solution of
the continuous time differential equation ( as noted earlier, it does not have to
be), it does provide insight into the complex dynamics of the continuous time
differential equation and may be used to gain an understanding of the source
of the morphology of the continuous time ODE. Approximations of the time
series of continuous time chaotic equations is now replaced by understanding
the component dynamics that produce the time series morphology of the
continuous time equations. As noted above, in the case of human EEG
and EKG, the dynamics are common to all ’normal’ subjects even though
their particular presentation may vary to some degree. This variability is
essential for humans to have common skills and understanding while differing
in physiology and anatomy, i.e., without each human having to be an exact
copy of some standard human being. Hence, we may understand the broad
dynamics by decomposing them into simpler, non chaotic autonomous parts
from which the general morphology dynamics are derived. The point is that
the nonlinear, non chaotic parts are the invariants of the process because they
are the source of the morphology even thought they, in combination, produce
an ever changing time series. It is important to recall that these ”familiar
characteristics” pose no obstacles to understanding or using the systems that
produce chaotic time series. So we must look to the invariants (non chaotic
components) of the system and ask what is their significance.

5 Complex Waves

We have seen that the source of much of chaotic dynamics can be viewed as
composed of two elements: A cadence function such as periodic forcing, and
a family of periodic curves that have their genesis in an autonomous system.
We now look closer at continuous forcing functions. To do this we first revisit
the Ueda, equation:

ẍ + δẋ + αx3 = γ cos ωt

Based on our analysis of discrete forcing, we know that embedded in this
simple equation is a recipe for complex wave motion that might be used to
model a wide range of time series such as the EEG and the EKG.

To identify the recipe, or model, for producing complex waves suggested
by the Ueda equation we must understand what is essential in the equation
to produce complex waves. As noted above, after some analysis the following
equation is discovered to contain all of the ingredients needed to produce
complex waves.

ẍ + αx3 = γ cos ωt

Our simplification removes the linear damping factor which we know cannot
be the source of the complexity in this case. What the damping factor can do
is reveal the presence of a strange attractor which we now know to shadow an
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underlying unstable manifold. The shape of the unstable manifold accounts
for the shape of the strange attractor when there exist a transverse homoclinic
point because of the complex manner it must wind about in a finite area as
a result of the transverse homoclinic point. The key to the complexity of
the solutions of the Ueda equation therefore lies only in the nonlinear factor
x3 and the external forcing function. As the forcing function is periodic
and linear, we turn to understanding the nonlinear factor. What we find
is that the nonlinear factor introduces in the solution of the Ueda equation
is a set of closed curves of varying frequencies and amplitudes. What the
cosine forcing introduces is a means of slightly modifying and moving between
these curves in a continuous manner. We can reproduce these features using
equations that are simpler to analyze. The following equation provides all of
the features we are seeking:

ẍ + z(x, ẋ) · x = γ cos ωt

We note that the Ueda equation is just a special case of this equation where
z(x, ẋ) = x2 We will call this equation the complex wave equation, or the
CWE. From the analysis in the preceding section, we know that the function
z and the forcing function cosine account for the chaotic properties of the
time series. We also know that there is no need to understand the time series
exactly. We only need to know that equations of this type can produce chaos,
or complex wave phenomena. Hence, in the analysis of time series, we need
methods to discover the forcing functions and the function z. To lay the
ground work for time series analysis we now analyze the CWE.

There are special cases of this equation that allow us to get a closer look
at the dynamics. In particular the case where

ż(x, ẋ) = 0

is a useful study. The constraint imposed by the above equation allows us to
solve the homogeneous version of the equation ẍ + z(x, ẋ) · x = 0 in closed
form in terms of elementary functions since it states that z is constant on
integral curves. Like the Ueda equation, the CWE provides a rich set of
integral curves with varying frequencies and amplitudes. The cosine forcing
assures that the solutions of the inhomogeneous equation are constructed in
a manner analogous to the Ueda equation. We will derive a solution for the
function z from a first order PDE in a later section and show how similar the
dynamics are to those of the Ueda equation.

6 The CWE and the Laws of Physics

The Duffing equation, from which the Ueda equation is formed, is derived by
use of the laws of physics. As we will see in the following section, the CWE
is derived without the use of the laws of physics. This raises an interesting
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question about this approach. Can the brain be modeled by using the laws
of physics directly or are the dynamics of the brain so complex that there is
little possibility of deriving a model using this approach? All results so far
suggest that a new approach is needed. As mentioned above, the approach
we have chosen follows the approach used by physicians in diagnosing pa-
tient pathologies by use of the EEG or EKG. The physician’s approach is
to examine the morphology of the EEG/EKG for phenomena that are devi-
ations from the normal from a morphological point-of-view. Hence we have
approached the derivation of our model from the point-of-view of obtaining
dynamics that fit morphological constraints rather than the constraints of
the laws of physics.

7 Morphological Approach to the Derivation
of the CWE

In this section we revisit some of the ideas of Sec.5 in order to have a com-
plete discussion of this section topic. As noted above, by a morphological
approach we mean that we are seeking to discover the dynamics of a class
of equations on the basis of their time series having certain features. This
is procedure of dynamical synthesis. In place of using the laws of physics to
derive an equation governing a class of dynamics, we examine the time series
output of the system and ask what class of equations (type of dynamics) can
generate such time series. Through this method we hope to bypass the com-
plex process of deriving brain dynamics from first principles, such as the laws
of science, and discover indirectly what those laws are through understanding
what equations of motion can generate the complex time series output of the
relevant dynamical system.

Our starting point is the simple, linear, harmonic oscillator ẍ + λ2x = 0.
This is the simplest possible equation describing how a single point, located at
position x riding up and down on a ”wave”. In this equation, the parameter
λ is a constant, representing the frequency of the motion, and is independent
of the initial conditions. Hence if we force this oscillator with a periodic
function such as cos(t) only simple almost periodic waves appear except in
the case where we have resonance.

As a first step to understanding nonlinear oscillators and how they gener-
ate complex wave motion, we look at a two-dimensional simplified version of
an ideal fluid rotating about a point( a system derived from the Naiver-Stokes
equation). This system of two interconnected ODE’s is given by

(
ẋ
ẏ

)
= r

(
0 −1
1 0

)(
x
y

)
(7)

where r =
√

x2 + y2. The solution of this equation is
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(
x(t)
y(t)

)
=

(
x0 cos(rt) + y0 sin(rt)
y0 cos(rt)− x0 sin(rt)

)

where r =
√

x2
0 + y2

0 . Nonlinearity imples that the initial conditions occur
in the solution in a nonlinear manner. In this case, the initial conditions
determine the frequency of the solution and this frequency is different on
each integral curve. In constast, the simple harmonic oscilator has the same
frequency on each integral curve. In other words, the frequency of the sim-
ple harmonic oscilator is independent of the integral curve and thus it is
independent of the initial conditions.

If Eq.7 is driven by a periodic force we obtainthe equation:
(

ẋ
ẏ

)
= r

(
0 −1
1 0

)(
x
y

)
+

(
a cos(t)

0

)
(8)

a complex wave form can arise which is different for each initial condition.
In fact, we know that there are chaotic solutions for this equation. In this
case, the Fourier Spectrum is of very little value. Where we must look is at
the function r(x, y)2 = x2 + y2. There are ready generalizations such as

(
ẋ
ẏ

)
= f(r)

(
0 −1
1 0

)(
x
y

)
+

(
a cos(t)

0

)

Where r2 = x2 + y2 and f is an arbitrary function of r. In analogy with the
Eq.7, the information lies in the function f(r), not the Fourier Transform.
In some sense the function f defines the induced spectrum of the solution set
since in the homogeneous unforced case, f is the frequency of the oscillator
for a given initial condition. The effect of the forcing function is to move
the resultant oscillator over a subset of frequencies defined by the function
f . The possible solutions run from periodic to chaotic.

Now consider the following equations:

x(t) = x0 cos(r0 · t) + ẋ0 sin(r0 · t)/r0 (9)
ẋ(t) = ẋ0 cos(r0 · t)− r0x0 sin(r0 · t) (10)

where r0(x0, ẋ0) is some function of the initial conditions. If we assume that
r = r0 is a constant of motion, then we can show easily that

ẋ2 + r2 · x2 = ẋ2
0 + r2

0 · x2
0 = C

For C > 0, this is an equation in the phase plane for an ellipse. Also, note
that we can replace r by any positive function of r, f(r). By differentiating
the above phase plane ellipse we get:

ẍ + r2 · x = 0
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or more generally.
ẍ + f(r)2 · x = 0

so that this is a nonlinear equation for periodic motion.
Setting C = r4 for convenience of solving the phase plane equation for

r, then r2 = 0.5(x2 +
√

x4 + 4 · ẋ2). We take only the positive value of the
quadratic equation in r2 to retain periodic solutions. Other solutions are
possible. For example, we may use the following equation to solve for r,

ẋ2 + r2 · x2 = r4 + r2

Given the elliptic equation we can now form the forced elliptic equation:

ẍ + r2 · x = a · cos(t)

and obtain chaotic solutions. More properly, we know that the time-one map
of this equation has periodic, almost periodic and chaotic solutions due to
the presence of KAM island chains.

We now write the above equation in another notation for convenience of
illustrating the key ideas:

ü + z(u, u̇) · u = 0

If ż = 0 then z is a constant along integral curves and in particular, z(u, u̇) =
z(u0, u̇0) = z0. From this know that the solution is given by

u(u0, u̇0, t) = u0 cos(z0t) + u̇0 sin(z0t)/z0

for the integral curve defined by the initial conditions u0, u̇0, and the fre-
quency is defined by z0.

In order to see how general this type of ”wave” equation is we use both the
second order equation and the condition that ż = 0 as a system of equations
to solve for the function z. Thus we have

ü + zu = 0 and ż = 0 = zuu̇ + zu̇ü = 0

Eliminating ü using both equations we get the following PDE:

u̇zu − uzzu̇ = 0

Making a change of notation to simplify the picture we get

yzx − xzzy = 0

or
yp− zxq = 0

a quasi linear homogeneous first order PDE for z. The general solution can
be written as either

z = f(zx2 + y2)
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or
g(z) = zx2 + y2

hence there exist an uncountable family of solutions for z and likewise there
are an uncountable set of nonlinear, periodic ODE’s which satisfy these con-
ditions if we require z > 0 or what is the same thing, rewrite the equation
using z2 in place of z.

A further generalization comes when we use the form

ü + z(u, u̇) · u2k+1 = 0

Solving the relevant PDE for z we get an implicit equation for z as before

z = f((k + 1)u̇2 + z · u2k+2)

Replacing z with z2 we may obtain the following quadratic equation in z2 as
an example solution.

z4 = (k + 1)u̇2 + z2 · u2k+2

Since z is constant along integral curves, this defines a family of closed curves
in the plane.

The above examples serve to demonstrate that the CWE has a very rich
range of complex solutions and provides a starting point for deriving mor-
phological dynamics for complex time series.

8 Complex Wave Models

As discussed in the previous section, the simplest complex wave model can
be obtained by using following equation:

ü + z2 · u = f(λ · t)

with the constraint ż = 0 and where f is a periodic function. In this equation,
z defines an invariant in that the only frequencies possible in the solution must
come from the arcs of the functions induced by z.

There are two important properties of the CWE. One is the ”clock” or
cadence defined by the periodic forcing function and the other is the ”spec-
trum” induced by z. Once we use empirical data to determine the clock and
the spectrum, then anomalies from these invariants must signal pathologies
or variances in the underlying dynamics that the model represents.

Using the CWE to model the EEG suggests that the brain is not solely a
self organizing system as a unit, but that there exists an executive function
within the brain which may be self organizing while also being determined
by genetics. In particular, the spectrum function and the clock may be
genetically determined. These two structures may be the source of the dy-
namics needed to move neurons into configurations needed by the brain to
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learn, repair, and act. A long-term goal is to be able to identify these execu-
tive physiological structures by first identifying the ’analytical’ spectrum and
clock through numerical analysis. Once the analytical spectrum and clock
are identified numerically and physiologically, a clearer notion of pathology
may be possible to define. In particular, it may be possible to automatically
detect when the analytical or physiological EEG spectrum or clock is devi-
ating from the normal or it may be possible to detect when the associated
physiological components are changing based on various scanning methods.
All of this may be possible to do far sooner than can presently be done by
visual examination of the EEG.

9 The Formalization of the Concept of Mor-
phology

In this section we provide a start at formalizing the concept of morphol-
ogy. Morphology is not a subject of topology or any other area of rigorous
mathematics and hence there is no mathematical framework for asking and
answering questions about morphology today. What is needed is an initial
framework from which to work. An approach is suggested by considering
the set of uniformly bounded continuous functions on the real line having
uniform bound B. From a morphological point-of-view, we intuitively require
that sin(x) and cos(x) be the same function, hence, we would like our defini-
tion to assure us that sin(x) ∼ cos(x) And more generally, for any f ∈ C(R)
and a ∈ R we require that f(x) ∼ f(x + a). Hence, we have f ∼ g relative
to a given partition of R, {Ei}, consisting of finite half open intervals of the
real line, {Ej(i)}, where j is a one-to-one and onto mapping of the integers
(note that this implies that Ej(i) = Ei + ai for some real number ai) and
f(x) = g(x + ai) on the interval Ei. This means that the function g is a
translation of f partition wise, but not necessarily globally.

Using this definition we see that ∼ defines an equivalence relation on
C(R). By considering C(R) mod this equivalence relation, we from the
morphology space, MB .

In general, in order to compare two functions, f, g, morphologically, we
must do so relative to a given partition of R, call it {Ei}. We proceed by
selecting a one-to-one, onto mapping of the integers,j and form the partition
{Ej(i)} (which provides a set of real numbers ai), we compare f on the
partition element Ei to g on the element Ei + ai by forming the number
|f(x)− g(x+ai)|. This clearly provides a notion of the degree of closeness of
f and g for each pair of partition elements, Ei, Ej(i). The maximum absolute
difference of f and g over all such partition element pairs provides a notion
of morphological closeness of the two functions over the entire given partition
of R. Now, by considering all possible partitions of R and selecting the one
for which f and g are the closest, we get a notion of how close g is to f in a
morphological sense.
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We may now define a notion of closeness formally for a function f ∈MB .
Given f ∈MB , for any g ∈MB , define

d(f, g) = lim inf
P

( sup
Ei∈P

|f(x)− g(x + ai)|)

Clearly, d(f, f) = 0, d(f, g) = d(g, f), and d(f, g) ≥ 0. To prove that this
notion of closeness is actually a metric we must prove that d(f, g) ≤ d(f, h)+
d(h, g) which is beyond the scope of this paper.

Associated to any ODE is a morphology space formed by the set of all
solutions of the ODE. We may now partition the domain of initial conditions
into equivalent classes according to the morphology space. Hence, two initial
conditions are equivalent if the time series generated by the two initial are
morphology equivalent. Further, the initial conditions are close if their time
series solutions of the ODE are morphologically close.

10 Dynamical Synthesis

In [1] and [6] we began a program called dynamical synthesis. While the
above analytical considerations are useful in moving this program forward,
we demonstrate in this section that the considerations in the previous sec-
tions are nowhere nearly enough to set the stage for a formal program seeking
to discover the full range of dynamics possible in nature. While the princi-
ple of dynamical synthesis is to recognize that the underlying physical forces
driving many dynamical systems may be so complex (i.e., EEG’s, tornados)
that there is little hope of deriving their mathematical formulation from first
principles, or from either the classical of modern laws of the physics; because
the objective of dynamical synthesis is to discover the underlying physical
principles in complex systems by observing a physical phenomena and re-
verse engineering the dynamics by ’guessing’ what dynamics might produce
such a system, we need an investigation into the sources of complexity in
mathematical and physical systems by constructing a broad array of exam-
ples and counterexamples analogous to those found in [8] in particular. To
set the stage, we provide an illustration from [8] that demonstrates the power
of combining, in a simple weighted sum, a periodic process with a Bernoulli
process (in particular an Anasov flow on a tour).

If we were to start from the laws of physics, it would be difficult to arrive at
this figure which is suggestive of natural processes. However, by knowing how
this figure is derived, it may make it easier to model real natural processes
by starting with a weighted sum of periodic and complex motions that are
known to exist within the environment of interest.

We now show how to construct complex time series that produce stretch-
ing and folding such as occurs in chaotic dynamical systems, and what may be
called subchatoic behavior such as illustrated in [8]. In order to advance this
line of investigation, we seek to discover the types of time series (as opposed
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Figure 5: This figure, reproduced from [8] is a simple weighted sum w ·B +
(1− w) · P 0 < w < 1 of a Bernoulli system and a Periodic system.

to differential equations) that may generate unstable manifolds, complex tor-
sion, pseudo random behavior and generally, any complex behavior beyond
almost periodic processes. In what follows, we present examples of time series
that produce images that resemble the unstable manifolds of chaotic dynam-
ical systems and bifurcations to chaos as well as complex high dimensional
dynamics. In order to generate complex time series we must resort to using
implicit functions and very small step size finite differences with step sizes
on the order of 10−3.

Since explicit time series of chaotic solutions of ODE’s seems out of reach
at present, we turn to implicit functions that bifurcate to chaos. Phase plots
constructed from bifurcating implicit functions provide an insight into the
structure of complex systems generally.

Implicit functions of the form x(t) = f(x(t), t) have a relationship to
finite difference equations of the form x(t + h) = f(x(t), t). Specifically, if
one were to seek to solve the implicit function equation by simple iteration,
the solution to the associated finite difference equation (AFDE) is the first
iterate. For implicit functions that can be solved by simple iteration, the
solution of the AFDE will converge to the implicit function. For implicit
functions that have hyperbolic fixed points, this does not happen.

The class of FDE’s we will use are those that have a non trivial associated
implicit function (AIF). In particular we only consider equations of the form:

x(t + h) = f(x(t), t) (11)
∂f

∂h
= 0 (12)

The condition
∂f

∂h
= 0
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eliminates equations arising from numerical approximations of differential
equations. The reason that we eliminate this form of FDE is that they do
not reveal the inner workings of chaotic ODE’s. For example, how the forcing
function of the Ueda equation constantly changes the frequency of the solu-
tion function is not clear from its conventional Taylor series approximation
as demonstrated in the following equation:

x(t + h) = x(t) + h · y(t) (13)
y(t + h) = y(t) + h(a · cos(t)− α · y(t)− x(t)3) (14)

The associated implicit function is degenerate. Hence as our starting point,
we have selected the cosine function:

x(t) = C0 cos(x(t)) (15)

The solution to this equation is a fixed point for which the repelling points are
of the most interest. To create a time series we add an inhomogeneous term.
For this we choose the most manageable way forward by adding a simple
periodic term in the argument of the cosine. We include an arbitrary constant
to be determined by the initial condition, Eq. 16 below. The reason we have
chosen this approach is that typical differential equations that produce chaos
can be driven by periodic functions which constantly changes the frequency
of the solution curve as discussed in Sec. 4. In general, the continuous time
solutions to Eq.17 and FDEs require knowing the function on an interval
[0, h), not just at two points x(0), x(h).

x(t) = C0 cos(x(t) + a sin(t)) (16)

We now shift to a finite difference expression having a small step size where h
can be made as small as we like. h will be the step size used in generating the
time series. The specific choice of our starting point is based on the analysis
in Sec. 3,4 and Sec. 5 which demonstrates that we must have continuously
changing frequency to have any chance of deriving time series that are chaotic
and that frequence must change in a nonlinear manner.

x(t + h) = C0 cos(x(t) + a sin(t)) (17)

The constant C0 can be evaluated by setting t = 0. Doing this we get

C0 =
x(h)

cos(x0)
(18)

Clearly, there are two datum needed to complete this formula which may
or may not converge to an implicit equation for the unknown function x(t).
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The implicit equation is solved by finding the fixed points, for each t, for the
map:

Tt(x) = C0 cos(x + a sin(t)) (19)

The derivative of this map tells what type of fixed point we have.

DTt|x = −C0 sin(x + a sin(t)) (20)

For |C0| < 1 we have contracting fixed points, signaling that the finite dif-
ference equation will have ’nice’ solutions for all values of t. However, when
|C0| > 1, the solutions of the implicit function equation can be hyperbolic,
depending on the value of cos(x(t) + a sin)t)), and, if so, will pose problems
of numerical analysis.

Interestingly, it is the hyperbolic fixed points of Eq.16 that play a signif-
icant role in the construction of complex time series of Eq.17. In particular,
for a hyperbolic fixed point of Eq.16, the iterates of Eq.16 will be repelled
from the fixed point. But, the first iterate is precisely x(t + h). Hence, we
have the following situation: For contracting fixed points, x(t+h) is attracted
toward the solution of Eq.16, and for hyperbolic fixed points, x(t + h) is re-
pelled away from the solution of Eq.16. The solution of Eq.16 is thus always
exerting a force on all associated finite difference equations. Specifically, as
|C0| → ∞, the hyperbolic fixed points of Eq.16 bifurcate to produce a period
doubling sequence of attracting periodic points. It is this period doubling
process that is the key to the complexity of the time series from Eq.17. In
other words, how this relates to the finite difference equation with any step
size is that the dynamics of the time series that the finite difference equation
generates is driven by the associated period doubling process of the implicit
equation. This situation is illustrated in a series of figures below.

In the following 5 time series illustrated below, the value of the arbitrary
constant goes from ≈ 0.94 to ≈ 1.94. In the top time series all fixed points
of the associated implicit function (AIF) are all attracting creating a very
simple continuous time series. For the second time series (red) c ≈ 1.44785
and we see that the time series has bifurcated in accordance with the AIF. The
bifurcation is to a pair of attracting period two points. The time series values
alternate between these two period two points producing a discontinuous
function. The function could be made continuous by selecting the same
period-two branch of the bifurcation diagram of the AIF. The green time
series shows a period-four bifurcation; the dark blue is period 8 and the light
blue is a very high period bifurcation. The value of the constant a is 6 in all
figures. The step size is ≈ 0.0008

A remarkable fact of this bifurcation process is that the discontinuity of
the time series is the source of the ’order’ on the dynamics seen in the delay
plot in the figures in the next section.
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Figure 6: This figure shows the progression of a time series as the associated
implicit function bifurcates. It is this bifurcation that plays a role in the
derivation of the following equations and associated illustrations.

11 Order Out of Chaotic Bifurcation Diagrams

In this section we present a series of phase diagrams that are generated by
short time step finite difference equations such as seen in Eq.17 above. Each
value of the parameter h defines a different function so long as the function
G is fixed. Hence, if we change the step size in Eq.17, we get a new function,
and a new phase plot. Further, as h → 0 the sequence of functions define
by Eq.17 do not necessarily converge to the solution of the implicit function
equation, Eq.16 .

In Figure 7 below, we use a variation on Eq.17 with c0 ≈ 1.2, a = 6.0, h ≈
0.008:

Figure 8 demonstrates that we can obtain near pseudo randomness by
choosing a high enough frequency for the cosine functions.

x(t + h) = C1 cos(x(t) + a · sin(t)) + C2 sin(x(t) (21)
ẋ(t + h) = −C1 sin(x(t) + a · sin(t)) · ẋ(t) + a · cos(t)

+ C2 · cos(x(t)) · ẋ(t) (22)

By holding the parameters fixed and modifying the initial conditions we
create spiral dynamics. Figures 8 and 9 demonstrate that the dynamics can
vary dramatically with the initial conditions. This is also true for ODEs
in that a single ODE can produce KAM island chains. While this seems
difficult to make sense of at first, we will see in the last section that almost
periodic functions and chaotic functions are more closely related than one
would expect. We demonstrate that, with these two figure, we can separate
the phase space into two main regions between which the system oscillates.

By reducing the value of a from 10 in Fig. 9 and 10 to 3 in Fig. 11 we
reduce oscillations and form a single spiral.
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Figure 7: in this figure we use the equation x(t+h) = c0 ·cos(x(t)2−a ·sin(t))
which shows the presence of nonlinear oscillations.

Figure 8: Figure 8 uses Eq.17 with a = 7000, c0 = 1.44785, h = 0.0088.
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Figure 9: The equations for this figure are Eq.21 and Eq.22. In this figure
C1 ≈ 0.8036, C2 ≈ 2.0, a = 10.0, h ≈ 0.0237.

Figure 10: In this figure we use the equations of Fig.9 where C1 ≈
0.8783, C2 ≈ 1.7236, a = 10.0, h ≈ 0.0237.

Figure 11: In this figure we also use the same equations as Fig. 8 and 9 with
C1 ≈ 0.8788, C2 ≈ 1.257, a = 3.0, h ≈ 0.044.
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Figure 12: In this figure C1 ≈ 1.29557, C2 ≈ 1.099750, a = 6.0, h ≈ 0.006935.

We now shift to another equation form in two variables. The arbitrary
constants are determined by four initial conditions, making this a four-
dimensional system. See Eq.23 and 24 below.

x(t + h) = C1 cos(y(t) + a sin(t)) (23)
y(t + h) = −C2 sin(x(t) + a cos(t)) (24)

The dynamics in this figure show the formation of circular motion that
develops into a high amplitude rotation before dying out and recycling. In
Fig.12 below, we retain the same equations and parameters except that we
increase C2

12 Bifurcation in Phase Plane Dynamics

In the next example we switch from using periodic functions to using rational
functions. The phase plane dynamics plot is (x(t + h), x(t). In this series of
three illustrations we vary the parameter a causing the phase plane image
to bifurcate to what resembles an unstable manifold. We use the following
equation:

x(t + h) =
7 · x(t)2

2 + x(t)2
+ a sin(3t) (25)

In Figures 13-15 we vary the amplitude of the forcing function as shown in
each figure.
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Figure 13: In these figures a = 3.3, 3.5, 5.68, h ≈ 0.0888.

Figure 14: In these figures a = 3.3, 3.5, 5.68, h ≈ 0.0888.

Figure 15: In these figures a = 3.3, 3.5, 5.68, h ≈ 0.0888.
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For this equation we can compute the fixed points directly. What we
observe in these three figures is the transition from a simple almost periodic
function to a very complex almost periodic function based on changing the
parameter a only. .

13 Almost Periodic Approximations to Unsta-
ble Manifolds

So far we have been able to progressively develop remarkably high levels of
complexity from very simple finite difference equations. However, they are
high dimensional examples since the FDE’s require more than two values to
solve for the arbitrary constants. In this section we show how to generate
two-dimensional complexity. In contrast to the equation

x(t + h) = cos(x(t) + a sin(t))

the following equation, derived from the family of twist-and-flip equations,
shows the changing frequency and the time series as a finite, explicit expres-
sion in terms of elementary functions. If the functions, f, g, h are periodic,
then the solutions are almost periodic, and hence not chaotic. However, the
integral curves, though almost periodic, bear a strong resemblance to the
unstable manifolds of chaotic equations.

(
x(t)
y(t)

)
=

(
cos(f(r)) sin(f(r)
− sin(f(r)) cos(f(r)

)(
c1g(t)
c2h(t)

)
(26)

The general form of Eq.26 is

X(t) = A(f(r))C(t) (27)

Since det(A) = 1 we have r2 = x2 + y2 = c2
1g(t)2 + c2

2h(t)2.
The following is an example of a two-dimensional phase plane integral

curve of Eq.27. The explanation for this comes from observing how illustra-
tions of unstable manifolds are derived. See [5].

The ODE is given by

Ẋ = ṙf ′(r)A′(f(r))A−1(f(r))X + A(f(r))G(t) (28)

If we let

B =
(

0 1
−1 0

)

Then Eq.28 simplifies to

Ẋ = ṙf ′(r)BX + A(f(r))G(t) (29)
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Figure 16: For both A and B λ1 = 0.2, λ2 = 6.0, c1 = 20.2, c2 = 12.0, f(r) =
1/(1.2 + sin(r)). In A, we modify g as follows: g(t) = cos(λ1 · t) + 1. h is
unchanged from the above description.

Figure 17: For both A and B λ1 = 0.2, λ2 = 8.0, c1 = 55.0, c2 = 15.0. In
Plate A, f(r) = sin(r): in Plate B f(r) = 4 log(r).

The presence of the factor ṙ means that the Lipschitz condition can fail and
we do not have unique solutions for Eq.29. The meaning of this is that,
while the unstable manifold of a forced ODE is not, itself, a solution to a
well behaved ODE, it may be possible to approximate the unstable manifold
by a solution of an ill conditioned ODE such as Eq.26 above. The significance
of this is that all of the complexity that arises from chaotic systems may be
approximated by almost periodic time series which can be written down in
closed form, as a finite expression, in terms of elementary functions. Note
that the almost period can be very long, and for all practical purposes, cannot
be distinguished from a function which is not almost periodic.

In the figures that follow, g(t) = cos(λ1 · t), h(t) = cos(λ2 · t). The
function f(r) varies as indicated. The frequency parameters λ1, λ2 are
specified as are the arbitrary constants. The frequencies, as suggested by
Eq.26 should be widely separated. The arbitrary constants c1, c2 can be
equal. Also, the arbitrary constants play the role of both amplitude and
frequency, as can be seen from Eq. 26.

In Fig. 18, Plate A is the image of an unstable manifold from the twist-
and-flip map [1]. Plate B is the integral curve from Eq.29. As mentioned
before, Eq.29 does not have unique solutions. As demonstrated in Figs.
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Figure 18: For Plate B λ1 = 0.2, λ2 = 1.0, c1 = c2 = 10.0, f(r) = 2/(sin((1 +
2r log(r))/r).

6-15, complex time series also arise form bifurcating implicit functions by
using the first iterate as a FDE. These observations suggest that there is
a relationship between bifurcating implicit functions and ODE’s which do
not have unique solutions. All equations have common characteristics of
varying frequencies connected to an underlying set of integral curves which
are invariants for autonomous ODE’s such as the autonomous CWE and other
Hamiltonian systems. It seems possible that there is a theorem linking all of
these factors together and linking the results to chaos, perhaps providing a
basis for developing a ”theory of chaos”.

14 Summary

Chaos has been an elusive phenomena in the sense that precise definitions
are difficult as shown in [7,9,10,11]. Moreover, applications have been diffi-
cult to formulate because of the inherent unpredictability of chaotic systems.
Conversely, models of complex systems have been difficult to derive because
the underlying physical principles are difficult to determine. To address these
problems we have suggested two changes in our point-of-view. First, view
chaos and other complex systems morphologically. Second, approach complex
systems through the method of dynamical synthesis. These two concepts are
interconnected. We have further demonstrated using these two concepts we
can derive a dramatic range of complex dynamics without reference to physi-
cal principles. These results suggests the need for a disciplined approach that
involves deriving theorems and formal computational techniques to provide
a systematic framework for analysis of complex systems. In short, there is a
need to develop a new area of mathematical inquiry that classifies, describes,
predicts, and explains complexity in a formal, computational setting.
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